Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Félix Alexandre Antunes Soares is active.

Publication


Featured researches published by Félix Alexandre Antunes Soares.


Toxicology | 2003

2,3-Dimercaptopropane-1-sulfonic acid and meso-2,3-dimercaptosuccinic acid increase mercury- and cadmium-induced inhibition of δ-aminolevulinate dehydratase

Cristina W. Nogueira; Félix Alexandre Antunes Soares; Paulo Cícero do Nascimento; D Muller; João Batista Teixeira da Rocha

Compounds derived from Dimercaprol, such as meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercaptopropane-1-sulfonic acid (DMPS), are becoming common agents for treating humans exposed to heavy metals. Heavy metals such as Pb(2+), Hg(2+) and Cd(2+) can inhibit delta-aminolevulinate dehydratase (delta-ALA-D) activity. Delta-ALA-D catalyzes the condensation of two delta-aminolevulinic acid (delta-ALA) molecules with the formation of porphobilinogen, a heme precursor. The effects of DMSA and DMPS alone or in combination with Cd(2+), Hg(2+), or Pb(2+) on hepatic delta-ALA-D were examined. DMPS and DMSA caused a dose-dependent inhibition of hepatic delta-ALA-D. In the presence of Hg(2+) or Cd(2+) the inhibitory potency of DMPS increased. Similarly, the inhibitory effects of Hg(2+) and Cd(2+) were markedly increased in the presence of DMSA. In contrast, the inhibitory effect of DMPS was not changed by inclusion of Pb(2+). As observed with DMSA, Zn(2+) did not modified the inhibitory effect of DMPS. Data of the present report support the idea that the complexes formed (metals-DMSA or DMPS) were more inhibitory than the metal (Hg(2+) and Cd(2+)) or the chelating agent alone to the hepatic delta-ALA-D activity, in vitro. The mechanism of hepatic delta-ALA-D inhibition by Hg(2+)-DMPS/DMSA and Cd(2+)-DMPS/DMSA complexes involve the essential thiol groups of the enzyme.


Toxicology Letters | 2003

Ebselen protects against methylmercury-induced inhibition of glutamate uptake by cortical slices from adult mice

Marcelo Farina; Marcos Emilio dos Santos Frizzo; Félix Alexandre Antunes Soares; Fábio Duarte Schwalm; Marcelo O. Dietrich; Gilson Zeni; João Batista Teixeira da Rocha; Diogo O. Souza

Methylmercury (MeHg) is a highly neurotoxic compound and the inhibition of glutamate uptake by astrocytes has been pointed as an important mechanism involved in MeHg-induced glutamate excitotoxicity. We examined the effect of oral exposure to MeHg (10 and 40 mg/l in drinking water) on glutamate uptake by brain cortical slices of adult mice. Moreover, the possible protective role of ebselen (20 mg/kg, subcutaneously) against MeHg effect was also examined. In addition, it was measured the glutathione peroxidase and catalase activities in mice brain. Our results demonstrated, for the first time, that in vivo exposure to MeHg causes a dose-dependent decrease in glutamate uptake and that ebselen, which did not affect the uptake per se, reverted this effect. MeHg decreased glutathione peroxidase activity and increased catalase activity, effects which were also prevented by ebselen. These results may indirectly indicate that: (i) the in vivo inhibitory effect of MeHg on glutamate uptake could be probably related to overproduction of H(2)O(2); (ii) the protective effect of ebselen on MeHg-induced inhibition of glutamate uptake could be related to its ability to detoxify H(2)O(2).


Toxicology | 2003

Profile of nonprotein thiols, lipid peroxidation and δ-aminolevulinate dehydratase activity in mouse kidney and liver in response to acute exposure to mercuric chloride and sodium selenite

Marcelo Farina; Ricardo Brandão; Fabiana S. Lara; Letı́cia B Pagliosa; Félix Alexandre Antunes Soares; Diogo O. Souza; João Batista Teixeira da Rocha

The effects of mercury (Hg(2+)) and selenite (Se(4+)) on delta-aminolevulinic acid dehydratase (delta-ALA-D) activity, 2-thiobarbituric acid reactive substances (TBARS) and nonprotein sulfhydryl content (NPSH) in mouse kidney and liver were investigated. Male mice were given a single i.p. injection of Hg(2+) and/or Se(4+) (25 micromol/kg) and were killed at 6, 12, 24 and 48 h after treatment. Hg(2+) inhibited renal delta-ALA-D at 6 and 12 h after treatment. Se(4+) abolished the inhibitory effect of mercury on renal delta-ALA-D at 12 h after treatment. Renal and hepatic NPSH content decreased after Hg(2+) exposure and selenite inhibited, at least in part, the Hg-induced oxidation of renal and hepatic NPSH. Se(4+) and Hg(2+), when injected alone, did not alter hepatic or renal TBARS levels; however, simultaneous exposure to these compounds increased hepatic and renal TBARS levels at 12 and 48 h after treatment, respectively. Present results suggest that selenium abolishes the interaction of Hg(2+) with sulfhydryl groups of protein and nonprotein sources.


Food and Chemical Toxicology | 2013

Protective action of ethanolic extract of Rosmarinus officinalis L. in gastric ulcer prevention induced by ethanol in rats.

Guilherme Pires Amaral; Nélson R. Carvalho; Rômulo Pillon Barcelos; Fernando Dobrachinski; Rafael de Lima Portella; Michele Hinerasky da Silva; Thiago Henrique Lugokenski; Glaecir Roseni Mundstock Dias; Sônia Cristina Almeida da Luz; Aline Augusti Boligon; Margareth Linde Athayde; Marcos A. Villetti; Félix Alexandre Antunes Soares; Roselei Fachinetto

The pathology of a gastric ulcer is complex and multifactorial. Gastric ulcers affect many people around the world and its development is a result of the imbalance between aggressive and protective factors in the gastric mucosa. In this study, we evaluated the ethanolic extract of Rosmarinus officinalis L. (eeRo); this plant, more commonly known as rosemary, has attracted the interest of the scientific community due to its numerous pharmacological properties and their potential therapeutic applications. Here, we tested the preventive effects of eeRo against gastric ulcer induced by 70% ethanol in male Wistar rats. In addition, we aimed to clarify the mechanism involved in the preventive action of the eeRo in gastric ulcers. Based on the analysis of markers of oxidative damage and enzymatic antioxidant defense systems, the measurement of nitrite and nitrate levels and the assessment of the inflammatory response, the eeRo exhibited significant antioxidant, vasodilator and antiinflammatory properties.


Epilepsia | 2009

Swimming training prevents pentylenetetrazol-induced inhibition of Na+, K+-ATPase activity, seizures, and oxidative stress

Mauren Assis Souza; Mauro Schneider Oliveira; Ana Flávia Furian; Leonardo Magno Rambo; Leandro Rodrigo Ribeiro; Frederico Diniz Lima; Liriana Correa Dalla Corte; Luiz Fernando Almeida Silva; Leandro Thies Retamoso; Cristiane Lenz Dalla Corte; Gustavo Orione Puntel; Daiana Silva de Ávila; Félix Alexandre Antunes Soares; Michele Rechia Fighera; Carlos Fernando Mello; Luiz Fernando Freire Royes

Purpose:  In the present study we decided to investigate whether physical exercise protects against the electrographic, oxidative, and neurochemical alterations induced by subthreshold to severe convulsive doses of pentyltetrazole (PTZ).


Neurotoxicology | 2013

Valeriana officinalis attenuates the rotenone-induced toxicity in Drosophila melanogaster

Jéssie Haigert Sudati; Francielli Araújo Vieira; Sandra Sartoretto Pavin; Glaecir Roseni Mundstock Dias; Rodrigo Lopes Seeger; Ronaldo Medeiros Golombieski; Margareth Linde Athayde; Félix Alexandre Antunes Soares; João Batista Teixeira da Rocha; Nilda Vargas Barbosa

In this study, we investigated the potential protective effects of Valeriana officinalis (V. officinalis) against the toxicity induced by rotenone in Drosophila melanogaster (D. melanogaster). Adult wild-type flies were concomitantly exposed to rotenone (500 μM) and V. officinalis aqueous extract (10mg/mL) in the food during 7 days. Rotenone-fed flies had a worse performance in the negative geotaxis assay (i.e. climbing capability) and open-field test (i.e. mobility time) as well as a higher incidence of mortality when compared to control group. V. officinalis treatment offered protection against these detrimental effects of rotenone. In contrast, the decreased number of crossings observed in the flies exposed to rotenone was not modified by V. officinalis. Rotenone toxicity was also associated with a marked decrease on the total-thiol content in the homogenates and cell viability of flies, which were reduced by V. officinalis treatment. Indeed, rotenone exposure caused a significant increase in the mRNA expression of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and also in the tyrosine hydroxylase (TH) gene. The expression of SOD and CAT mRNAs was normalized by V. officinalis treatment. Our results suggest that V. officinalis extract was effective in reducing the toxicity induced by rotenone in D. melanogaster as well as confirm the utility of this model to investigate potential therapeutic strategies on movement disorders, including Parkinson disease (PD).


Journal of Neuroscience Research | 2005

Effects of chronic administered guanosine on behavioral parameters and brain glutamate uptake in rats

Elsa Regina do Canto Vinade; André Prato Schmidt; Marcos Emilio dos Santos Frizzo; Luis Valmor Cruz Portela; Félix Alexandre Antunes Soares; Fábio Duarte Schwalm; Elaine Elisabetsky; Ivan Izquierdo; Diogo O. Souza

Oral and intraperitoneal administration of the nucleoside guanosine have been shown to prevent quinolinic acid‐ (QA) and α‐dendrotoxin‐induced seizures, impair memory, and impair anxiety in rats and mice. We investigated the effect of 2‐weeks ad lib orally administered guanosine (0.5 mg/ml) on seizures induced by QA, inhibitory avoidance memory, and locomotor performance in rats. We also studied the mechanism of action of guanosine through the measurement of its concentration in the cerebrospinal fluid (CSF) and its effect on glutamate uptake in cortical slices of rats. QA produced seizures in 85% of rats, an effect partially prevented by guanosine (53% of seizures; P = 0.0208). Guanosine also impaired retention on the inhibitory avoidance task (P = 0.0278) and decreased locomotor activity on the open field test (P = 0.0101). The CSF guanosine concentration increased twofold in the treated group compared to that in the vehicle group (P = 0.0178). Additionally, QA promoted a 30% decrease in glutamate uptake as compared to that with intracerebroventricular saline administration, an effect prevented by guanosine in animals protected against QA‐induced seizures. Altogether, these findings suggest a potential role of guanosine for treating diseases involving glutamatergic excitotoxicity such as epilepsy. These effects seem to be related to modulation of glutamate uptake.


Toxicology Letters | 2003

Mechanisms of the inhibitory effects of selenium and mercury on the activity of δ-aminolevulinate dehydratase from mouse liver, kidney and brain

Marcelo Farina; Ricardo Brandão; F.S. Lara; Félix Alexandre Antunes Soares; Diogo Onofre Gomes de Souza; João Batista Teixeira da Rocha

Mercury is known to interact with selenite and when the two are co-administered, one reduces the toxicity of the other. The main goal of this study was to investigate the simultaneous in vitro effects of sodium selenite (Se(4+)) and mercuric chloride (Hg(2+)) on the activity of hepatic, renal and cerebral delta-aminolevulinate dehydratase (delta-ALA-D) of adult male mice (Swiss albino). Hg(2+) inhibited delta-ALA-D from tissue supernatants and the IC(50) values for hepatic, renal and cerebral enzyme inhibition were 38+/-4.2, 67.5+/-4.3 and 46.2+/-3.7 microM, respectively. Se(4+) displayed a higher inhibitory action toward delta-ALA-D activity than Hg(2+). Simultaneous addition of Se(4+) and Hg(2+) to the delta-ALA-D assay increased the inhibition of the enzyme. Se(4+) and Hg(2+) oxidized total -SH groups from hepatic, renal and cerebral supernatants, although the effect of Se(4+) decreased in the presence of increasing concentrations of Hg(2+). The oxidation of -SH groups from a dithiol (DTT), a monothiol glutathione (GSH) and a protein (albumin) increased in the presence of Hg(2+). Only DTT was oxidized by Se(4+) and the oxidation decreased in the presence of Hg(2+), suggesting the formation of a chemical complex. This complex did not inhibit delta-ALA-D. These results suggest a similar inhibitory mechanism of Se(4+) and Hg(2+) on delta-ALA-D in which oxidation of sulfhydryl groups located at the active site of the enzyme is an essential step. Furthermore, decreasing oxidative effects of selenite on sulfhydryl groups from DTT in the presence of mercury are believed to occur as the result of the formation of an inactive ternary complex of the thiol-Hg-Se type, which does not inhibit delta-ALA-D.


Free Radical Biology and Medicine | 2012

Organotellurium and organoselenium compounds attenuate Mn-induced toxicity in Caenorhabditis elegans by preventing oxidative stress.

Daiana Silva de Ávila; Alexandre Benedetto; Catherine Au; Flávia Manarin; Keith M. Erikson; Félix Alexandre Antunes Soares; João Batista Teixeira da Rocha; Michael Aschner

Organochalcogens have been widely studied given their antioxidant activity, which confers neuroprotection, antiulcer, and antidiabetic properties. Given the complexity of mammalian models, understanding the cellular and molecular effects of organochalcogens has been hampered. The nematode worm Caenorhabditis elegans is an alternative experimental model that affords easy genetic manipulations, green fluorescent protein tagging, and in vivo live analysis of toxicity. We previously showed that manganese (Mn)-exposed worms exhibit oxidative-stress-induced neurodegeneration and life-span reduction. Here we use Mn-exposed worms as a model for an oxidatively challenged organism to investigate the underlying mechanisms of organochalcogen antioxidant properties. First, we recapitulate in C. elegans the effects of organochalcogens formerly observed in mice, including their antioxidant activity. This is followed by studies on the ability of these compounds to afford protection against Mn-induced toxicity. Diethyl-2-phenyl-2-tellurophenyl vinyl phosphonate (DPTVP) was the most efficacious compound, fully reversing the Mn-induced reduction in survival and life span. Ebselen was also effective, reversing the Mn-induced reduction in survival and life span, but to a lesser extent compared with DPTVP. DPTVP also lowered Mn-induced increases in oxidant levels, indicating that the increased survival associated with exposure to this compound is secondary to a decrease in oxidative stress. Furthermore, DPTVP induced nuclear translocation of the transcriptional factor DAF-16/FOXO, which regulates stress responsiveness and aging in worms. Our findings establish that the organochalcogens DPTVP and ebselen act as antiaging agents in a model of Mn-induced toxicity and aging by regulating DAF-16/FOXO signaling and attenuating oxidative stress.


Aquatic Toxicology | 2014

Co-exposure of the organic nanomaterial fullerene C60 with benzo(a)pyrene in Danio rerio (zebrafish) hepatocytes: Evidence of toxicological interactions

Josencler L. Ribas Ferreira; María Noelia Lonné; Thiago F.A. França; Naiana R. Maximilla; Thiago Henrique Lugokenski; Patrícia Gomes Costa; Gilberto Fillmann; Félix Alexandre Antunes Soares; Fernando R. de la Torre; José M. Monserrat

Compounds from the nanotechnology industry, such as carbon-based nanomaterials, are strong candidates to contaminate aquatic environments because their production and disposal have exponentially grown in a few years. Previous evidence shows that fullerene C60, a carbon nanomaterial, can facilitate the intake of metals or PAHs both in vivo and in vitro, potentially amplifying the deleterious effects of these toxicants in organisms. The present work aimed to investigate the effects of fullerene C60 in a Danio rerio (zebrafish) hepatocyte cell lineage exposed to benzo[a]pyrene (BaP) in terms of cell viability, oxidative stress parameters and BaP intracellular accumulation. Additionally, a computational docking was performed to investigate the interaction of the fullerene C60 molecule with the detoxificatory and antioxidant enzyme πGST. Fullerene C60 provoked a significant (p<0.05) loss in cellular viability when co-exposed with BaP at 0.01, 0.1 and 1.0 μg/L, and induced an increase (p<0.05) in BaP accumulation in the cells after 3 and 4h of exposure. The levels of reactive oxygen species (ROS) in the cells exposed to BaP were diminished (p<0.05) by the fullerene addition, and the increase of the GST activity observed in the BaP-only treated cells was reduced to the basal levels by co-exposure to fullerene. However, despite the potential of the fullerene molecule to inhibit π GST activity, demonstrated by the computational docking, the nanomaterial did not significantly (p>0.05) alter the enzyme activity when added to GST purified extracts from the zebrafish hepatocyte cells. These results show that fullerene C60 can increase the intake of BaP into the cells, decreasing cell viability and impairing the detoxificatory response by phase II enzymes, such as GST, and this latter effect should be occurring at the transcriptional level.

Collaboration


Dive into the Félix Alexandre Antunes Soares's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sílvio Terra Stefanello

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Fernando Dobrachinski

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Cristina W. Nogueira

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Nélson R. Carvalho

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Rômulo Pillon Barcelos

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Guilherme Pires Amaral

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Nilda Vargas Barbosa

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Michael Aschner

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Cristiane Lenz Dalla Corte

Universidade Federal de Santa Maria

View shared research outputs
Researchain Logo
Decentralizing Knowledge