Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caroline Corteville is active.

Publication


Featured researches published by Caroline Corteville.


Circulation | 2015

Rapid and Body Weight-Independent Improvement of Endothelial and High-Density Lipoprotein Function After Roux-en-Y Gastric Bypass: Role of Glucagon-Like Peptide-1

Elena Osto; Petia Doytcheva; Caroline Corteville; Marco Bueter; Claudia Dörig; Simona Stivala; Helena Buhmann; Sophie Colin; Lucia Rohrer; Reda Hasballa; Anne Tailleux; Christian Wolfrum; Francesco Tona; Jasmin Manz; Diana Vetter; Kerstin Spliethoff; Paul M. Vanhoutte; Ulf Landmesser; François Pattou; Bart Staels; Christian M. Matter; Thomas A. Lutz; Thomas F. Lüscher

Background— Roux-en-Y gastric bypass (RYGB) reduces body weight and cardiovascular mortality in morbidly obese patients. Glucagon-like peptide-1 (GLP-1) seems to mediate the metabolic benefits of RYGB partly in a weight loss–independent manner. The present study investigated in rats and patients whether obesity-induced endothelial and high-density lipoprotein (HDL) dysfunction is rapidly improved after RYGB via a GLP-1–dependent mechanism. Methods and Results— Eight days after RYGB in diet-induced obese rats, higher plasma levels of bile acids and GLP-1 were associated with improved endothelium-dependent relaxation compared with sham-operated controls fed ad libitum and sham-operated rats that were weight matched to those undergoing RYGB. Compared with the sham-operated rats, RYGB improved nitric oxide (NO) bioavailability resulting from higher endothelial Akt/NO synthase activation, reduced c-Jun amino terminal kinase phosphorylation, and decreased oxidative stress. The protective effects of RYGB were prevented by the GLP-1 receptor antagonist exendin9-39 (10 &mgr;g·kg−1·h−1). Furthermore, in patients and rats, RYGB rapidly reversed HDL dysfunction and restored the endothelium-protective properties of the lipoprotein, including endothelial NO synthase activation, NO production, and anti-inflammatory, antiapoptotic, and antioxidant effects. Finally, RYGB restored HDL-mediated cholesterol efflux capacity. To demonstrate the role of increased GLP-1 signaling, sham-operated control rats were treated for 8 days with the GLP-1 analog liraglutide (0.2 mg/kg twice daily), which restored NO bioavailability and improved endothelium-dependent relaxations and HDL endothelium-protective properties, mimicking the effects of RYGB. Conclusions— RYGB rapidly reverses obesity-induced endothelial dysfunction and restores the endothelium-protective properties of HDL via a GLP-1–mediated mechanism. The present translational findings in rats and patients unmask novel, weight-independent mechanisms of cardiovascular protection in morbid obesity.


Physiology & Behavior | 2015

Gastric bypass in rats does not decrease appetitive behavior towards sweet or fatty fluids despite blunting preferential intake of sugar and fat

Clare M. Mathes; Ryan A. Bohnenkamp; Ginger D. Blonde; Chanel Letourneau; Caroline Corteville; Marco Bueter; Thomas A. Lutz; Carel W. le Roux; Alan C. Spector

After Roux-en-Y gastric bypass surgery (RYGB), patients report consuming fewer fatty and dessert-like foods, and rats display blunted sugar and fat preferences. Here we used a progressive ratio task (PR) in our rat model to explicitly test whether RYGB decreases the willingness of rats to work for very small amounts of preferred sugar- and/or fat-containing fluids. In each of two studies, two groups of rats - one maintained on a high-fat diet (HFD) and standard chow (CHOW) and one given CHOW alone - were trained while water-deprived to work for water or either Ensure or 1.0 M sucrose on increasingly difficult operant schedules. When tested before surgery while nondeprived, HFD rats had lower PR breakpoints (number of operant responses in the last reinforced ratio) for sucrose, but not for Ensure, than CHOW rats. After surgery, at no time did rats given RYGB show lower breakpoints than SHAM rats for Ensure, sucrose, or when 5% Intralipid served postoperatively as the reinforcer. Nevertheless, RYGB rats showed blunted preferences for these caloric fluids versus water in 2-bottle preference tests. Importantly, although the Intralipid and sucrose preferences of RYGB rats decreased further over time, subsequent breakpoints for them were not significantly impacted. Collectively, these data suggest that the observed lower preferences for normally palatable fluids after RYGB in rats may reflect a learned adjustment to altered postingestive feedback rather than a dampening of the reinforcing taste characteristics of such stimuli as measured by the PR task in which postingestive stimulation is negligible.


International Journal of Obesity | 2016

Alterations in energy expenditure in Roux-en-Y gastric bypass rats persist at thermoneutrality

Kathrin Abegg; Caroline Corteville; Marco Bueter; Thomas A. Lutz

Background:The compensatory decrease in energy expenditure (EE) in response to body weight loss is attenuated by Roux-en-Y gastric bypass (RYGB) surgery in rats. The thermoneutral zone (TNZ) is at higher temperatures in rodents than in humans. Consequently, rodents may be under moderate cold stress if EE is measured at room temperature, leading to increased EE due to adaptive thermogenesis. We speculated that the reported alterations in EE of RYGB rats at room temperature are caused by higher adaptive thermogenesis and are therefore not present at thermoneutrality.Methods:Male Wistar rats were randomized for RYGB or sham surgery. Some sham rats were body weight matched (BWM) to the RYGB rats by food restriction, the others received ad libitum access to food (AL). EE, body temperature, physical activity and food intake were measured at ambient temperatures between 22 and 32 °C to determine the TNZ. Adaptive thermogenesis requires β3-adrenergic receptor-mediated uncoupling protein-1 (UCP-1) expression in brown adipose tissue (BAT). The in vivo thermogenic capacity of BAT was determined by administering the β3-adrenergic agonist CL316,243, and UCP-1 protein expression was measured at room temperature.Results:The TNZ was between 28 and 30 °C for AL and RYGB and between 30 and 32 °C for BWM rats, respectively. In contrast to AL and BWM rats, EE was not significantly higher at room temperature than at thermoneutrality in RYGB rats, reflecting a lack of adaptive thermogenesis. Consistently, both the thermogenic capacity of BAT and UCP-1 expression were decreased in RYGB compared with AL rats at room temperature.Conclusions:Our data confirm that the decrease in EE after body weight loss is attenuated by RYGB surgery and show that this effect persists at thermoneutrality. Contrary to our hypothesis, we found that adaptive thermogenesis at room temperature is reduced in RYGB rats.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015

Effect of bariatric surgery combined with medical therapy versus intensive medical therapy or calorie restriction and weight loss on glycemic control in Zucker diabetic fatty rats

Kathrin Abegg; Caroline Corteville; Neil G. Docherty; Camilo Boza; Thomas A. Lutz; Rodrigo Muñoz; Carel W. le Roux

Bariatric surgery rapidly improves Type 2 diabetes mellitus (T2DM). Our objective was to profile and compare the extent and duration of improved glycemic control following Roux-en-Y gastric (RYGB) bypass surgery and vertical sleeve gastrectomy (SG) and compare against calorie restriction/weight loss and medical combination therapy-based approaches using the Zucker diabetic fatty rat (ZDF) rodent model of advanced T2DM. Male ZDF rats underwent RYGB (n = 15) or SG surgery (n = 10) at 18 wk of age and received postsurgical insulin treatment, as required to maintain mid-light-phase glycemia within a predefined range (10-15 mmol/l). In parallel, other groups of animals underwent sham surgery with ad libitum feeding (n = 6), with body weight (n = 8), or glycemic matching (n = 8) to the RYGB group, using food restriction or a combination of insulin, metformin, and liraglutide, respectively. Both bariatric procedures decreased the daily insulin dose required to maintain mid-light-phase blood glucose levels below 15 mmol/l, compared with those required by body weight or glycemia-matched rats (P < 0.001). No difference was noted between RYGB and SG with regard to initial efficacy. SG was, however, associated with higher food intake, weight regain, and higher insulin requirements vs. RYGB at study end (P < 0.05). Severe hypoglycemia occurred in several rats after RYGB. RYGB and SG significantly improved glycemic control in a rodent model of advanced T2DM. While short-term outcomes are similar, long-term efficacy appears marginally better after RYGB, although this is tempered by the increased risk of hypoglycemia.


Surgery for Obesity and Related Diseases | 2017

Effect of Roux-en-Y gastric bypass and diet-induced weight loss on diabetic kidney disease in the Zucker diabetic fatty rat

Karl J. Neff; Jessie A. Elliott; Caroline Corteville; Kathrin Abegg; Camilo Boza; Thomas A. Lutz; Neil G. Docherty; Carel W. le Roux

BACKGROUND Reductions in urinary protein excretion after Roux-en-Y gastric bypass (RYGB) surgery in patients with diabetic kidney disease have been reported in multiple studies. OBJECTIVES To determine the weight loss dependence of the effect of RYGB on urinary protein excretion by comparing renal outcomes in Zucker diabetic fatty rats undergoing either gastric bypass surgery or a sham operation with or without weight matching. SETTING University laboratories. METHODS Zucker diabetic fatty rats underwent surgery at 18 weeks of age. A subgroup of sham operated rats were weight matched to RYGB operated rats by restricting food intake. Urinary protein excretion was assessed at baseline and at postoperative weeks 4 and 12. Renal histology and macrophage-associated inflammation were assessed at postoperative week 12. RESULTS Progressive urinary protein excretion was attenuated by both RYGB and diet-induced weight loss, albeit to a lesser extent by the latter. Both weight loss interventions produced equivalent reductions in glomerulomegaly, glomerulosclerosis, and evidence of renal macrophage infiltration. CONCLUSION Weight loss per se improves renal structure and attenuates renal inflammatory responses in an experimental animal model of diabetic kidney disease. Better glycemic control post-RYGB may in part explain the greater reductions in urinary protein excretion after gastric bypass surgery.


Circulation | 2015

Rapid and Body Weight-Independent Improvement of Endothelial and HDL Function After Roux-en-Y Gastric Bypass: Role of Glucagon-Like Peptide-1

Elena Osto; Petia Doytcheva; Caroline Corteville; Marco Bueter; Claudia Dörig; Simona Stivala; Helena Buhmann; Sophie Colin; Lucia Rohrer; Reda Hasballa; Anne Tailleux; Christian Wolfrum; Francesco Tona; Jasmin Manz; Diana Vetter; Kerstin Spliethoff; Paul M. Vanhoutte; Ulf Landmesser; François Pattou; Bart Staels; Christian M. Matter; Thomas A. Lutz; Thomas F. Lüscher

Background— Roux-en-Y gastric bypass (RYGB) reduces body weight and cardiovascular mortality in morbidly obese patients. Glucagon-like peptide-1 (GLP-1) seems to mediate the metabolic benefits of RYGB partly in a weight loss–independent manner. The present study investigated in rats and patients whether obesity-induced endothelial and high-density lipoprotein (HDL) dysfunction is rapidly improved after RYGB via a GLP-1–dependent mechanism. Methods and Results— Eight days after RYGB in diet-induced obese rats, higher plasma levels of bile acids and GLP-1 were associated with improved endothelium-dependent relaxation compared with sham-operated controls fed ad libitum and sham-operated rats that were weight matched to those undergoing RYGB. Compared with the sham-operated rats, RYGB improved nitric oxide (NO) bioavailability resulting from higher endothelial Akt/NO synthase activation, reduced c-Jun amino terminal kinase phosphorylation, and decreased oxidative stress. The protective effects of RYGB were prevented by the GLP-1 receptor antagonist exendin9-39 (10 &mgr;g·kg−1·h−1). Furthermore, in patients and rats, RYGB rapidly reversed HDL dysfunction and restored the endothelium-protective properties of the lipoprotein, including endothelial NO synthase activation, NO production, and anti-inflammatory, antiapoptotic, and antioxidant effects. Finally, RYGB restored HDL-mediated cholesterol efflux capacity. To demonstrate the role of increased GLP-1 signaling, sham-operated control rats were treated for 8 days with the GLP-1 analog liraglutide (0.2 mg/kg twice daily), which restored NO bioavailability and improved endothelium-dependent relaxations and HDL endothelium-protective properties, mimicking the effects of RYGB. Conclusions— RYGB rapidly reverses obesity-induced endothelial dysfunction and restores the endothelium-protective properties of HDL via a GLP-1–mediated mechanism. The present translational findings in rats and patients unmask novel, weight-independent mechanisms of cardiovascular protection in morbid obesity.


Circulation | 2015

Rapid and Body Weight–Independent Improvement of Endothelial and High-Density Lipoprotein Function After Roux-en-Y Gastric BypassCLINICAL PERSPECTIVE: Role of Glucagon-Like Peptide-1

Elena Osto; Petia Doytcheva; Caroline Corteville; Marco Bueter; Claudia Dörig; Simona Stivala; Helena Buhmann; Sophie Colin; Lucia Rohrer; Reda Hasballa; Anne Tailleux; Christian Wolfrum; Francesco Tona; Jasmin Manz; Diana Vetter; Kerstin Spliethoff; Paul M. Vanhoutte; Ulf Landmesser; François Pattou; Bart Staels; Christian M. Matter; Thomas A. Lutz; Thomas F. Lüscher

Background— Roux-en-Y gastric bypass (RYGB) reduces body weight and cardiovascular mortality in morbidly obese patients. Glucagon-like peptide-1 (GLP-1) seems to mediate the metabolic benefits of RYGB partly in a weight loss–independent manner. The present study investigated in rats and patients whether obesity-induced endothelial and high-density lipoprotein (HDL) dysfunction is rapidly improved after RYGB via a GLP-1–dependent mechanism. Methods and Results— Eight days after RYGB in diet-induced obese rats, higher plasma levels of bile acids and GLP-1 were associated with improved endothelium-dependent relaxation compared with sham-operated controls fed ad libitum and sham-operated rats that were weight matched to those undergoing RYGB. Compared with the sham-operated rats, RYGB improved nitric oxide (NO) bioavailability resulting from higher endothelial Akt/NO synthase activation, reduced c-Jun amino terminal kinase phosphorylation, and decreased oxidative stress. The protective effects of RYGB were prevented by the GLP-1 receptor antagonist exendin9-39 (10 &mgr;g·kg−1·h−1). Furthermore, in patients and rats, RYGB rapidly reversed HDL dysfunction and restored the endothelium-protective properties of the lipoprotein, including endothelial NO synthase activation, NO production, and anti-inflammatory, antiapoptotic, and antioxidant effects. Finally, RYGB restored HDL-mediated cholesterol efflux capacity. To demonstrate the role of increased GLP-1 signaling, sham-operated control rats were treated for 8 days with the GLP-1 analog liraglutide (0.2 mg/kg twice daily), which restored NO bioavailability and improved endothelium-dependent relaxations and HDL endothelium-protective properties, mimicking the effects of RYGB. Conclusions— RYGB rapidly reverses obesity-induced endothelial dysfunction and restores the endothelium-protective properties of HDL via a GLP-1–mediated mechanism. The present translational findings in rats and patients unmask novel, weight-independent mechanisms of cardiovascular protection in morbid obesity.


Circulation | 2015

Rapid and Body Weight–Independent Improvement of Endothelial and High-Density Lipoprotein Function After Roux-en-Y Gastric BypassCLINICAL PERSPECTIVE

Elena Osto; Petia Doytcheva; Caroline Corteville; Marco Bueter; Claudia Dörig; Simona Stivala; Helena Buhmann; Sophie Colin; Lucia Rohrer; Reda Hasballa; Anne Tailleux; Christian Wolfrum; Francesco Tona; Jasmin Manz; Diana Vetter; Kerstin Spliethoff; Paul M. Vanhoutte; Ulf Landmesser; François Pattou; Bart Staels; Christian M. Matter; Thomas A. Lutz; Thomas F. Lüscher

Background— Roux-en-Y gastric bypass (RYGB) reduces body weight and cardiovascular mortality in morbidly obese patients. Glucagon-like peptide-1 (GLP-1) seems to mediate the metabolic benefits of RYGB partly in a weight loss–independent manner. The present study investigated in rats and patients whether obesity-induced endothelial and high-density lipoprotein (HDL) dysfunction is rapidly improved after RYGB via a GLP-1–dependent mechanism. Methods and Results— Eight days after RYGB in diet-induced obese rats, higher plasma levels of bile acids and GLP-1 were associated with improved endothelium-dependent relaxation compared with sham-operated controls fed ad libitum and sham-operated rats that were weight matched to those undergoing RYGB. Compared with the sham-operated rats, RYGB improved nitric oxide (NO) bioavailability resulting from higher endothelial Akt/NO synthase activation, reduced c-Jun amino terminal kinase phosphorylation, and decreased oxidative stress. The protective effects of RYGB were prevented by the GLP-1 receptor antagonist exendin9-39 (10 &mgr;g·kg−1·h−1). Furthermore, in patients and rats, RYGB rapidly reversed HDL dysfunction and restored the endothelium-protective properties of the lipoprotein, including endothelial NO synthase activation, NO production, and anti-inflammatory, antiapoptotic, and antioxidant effects. Finally, RYGB restored HDL-mediated cholesterol efflux capacity. To demonstrate the role of increased GLP-1 signaling, sham-operated control rats were treated for 8 days with the GLP-1 analog liraglutide (0.2 mg/kg twice daily), which restored NO bioavailability and improved endothelium-dependent relaxations and HDL endothelium-protective properties, mimicking the effects of RYGB. Conclusions— RYGB rapidly reverses obesity-induced endothelial dysfunction and restores the endothelium-protective properties of HDL via a GLP-1–mediated mechanism. The present translational findings in rats and patients unmask novel, weight-independent mechanisms of cardiovascular protection in morbid obesity.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2014

Roux-en-Y gastric bypass does not affect daily water intake or the drinking response to dipsogenic stimuli in rats

Aniko Marshall; Jessica Santollo; Caroline Corteville; Thomas A. Lutz; Derek Daniels


European Heart Journal | 2013

Increased plasma Glucagon Like Peptide-1 improves endothelial dysfunction immediately after Roux-en-Y gastric bypass prior to body weight loss inhibiting the c-Jun N-terminal Protein Kinase Signaling

Elena Osto; P. Doytcheva; Caroline Corteville; Kerstin Spliethoff; Marco Bueter; Lucia Rohrer; Ulf Landmesser; Christian M. Matter; Thomas A. Lutz; Thomas F. Lüscher

Collaboration


Dive into the Caroline Corteville's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Bueter

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge