Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian M. Matter is active.

Publication


Featured researches published by Christian M. Matter.


European Heart Journal | 2010

SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis.

Sokrates Stein; Christine Lohmann; Nicola Schäfer; Janin Hofmann; Lucia Rohrer; Christian Besler; Karin M. Rothgiesser; Burkhard Becher; Michael O. Hottiger; Jan Borén; Michael W. McBurney; Ulf Landmesser; Thomas F. Lüscher; Christian M. Matter

Aims Endothelial activation, macrophage infiltration, and foam cell formation are pivotal steps in atherogenesis. Our aim in this study was to analyse the role of SIRT1, a class III deacetylase with important metabolic functions, in plaque macrophages and atherogenesis. Methods and results Using partial SIRT1 deletion in atherosclerotic mice, we demonstrate that SIRT1 protects against atherosclerosis by reducing macrophage foam cell formation. Peritoneal macrophages from heterozygous SIRT1 mice accumulate more oxidized low-density lipoprotein (oxLDL), thereby promoting foam cell formation. Bone marrow-restricted SIRT1 deletion confirmed that SIRT1 function in macrophages is sufficient to decrease atherogenesis. Moreover, we show that SIRT1 reduces the uptake of oxLDL by diminishing the expression of lectin-like oxLDL receptor-1 (Lox-1) via suppression of the NF-κB signalling pathway. Conclusion Our findings demonstrate protective effects of SIRT1 in atherogenesis and suggest pharmacological SIRT1 activation as a novel anti-atherosclerotic strategy by reducing macrophage foam cell formation.


Cell Cycle | 2011

Protective roles of SIRT1 in atherosclerosis

Sokrates Stein; Christian M. Matter

SIRT1 is a NAD+-dependent class III histone deacetylase (HDAC) that mediates the effects of caloric restriction on lifespan and metabolic pathways in various organisms. It deacetylates both histone and non-histone proteins, and targets proteins with diverse cellular and tissue functions. In the vasculature of rodent models SIRT1 mediates vasodilatation via eNOS-derived nitric oxide (NO) and scavenging reactive oxygen species (ROS). Recent studies demonstrated further protective roles of SIRT1 in vascular biology and atherosclerosis. In endothelial cells and macrophages SIRT1 has anti-inflammatory functions by downregulating the expression of various pro-inflammatory cytokines by interfering with the NF-kB signaling pathway. Deacetylation of RelA/p65-NF-kB by SIRT1 in macrophages also suppresses the expression of Lox-1, a scavenger receptor for oxidized low-density lipoproteins (oxLDL), thereby preventing macrophage foam cell formation. Moreover, SIRT1 has been shown to regulate the activity of Liver X-receptor (LXR), thereby promoting ABCA1-driven reverse cholesterol transport in plaque macrophages. Finally, SIRT1 suppresses the expression of endothelial tissue factor (coagulation factor III) and hence exerts anti-thrombotic properties. These findings indicate atheroprotective effects of SIRT1 in atherogenesis and highlight the need for translational research from bench-to-bedside. Indeed, SIRT1 activators are available for experimental research and undergo clinical testing. Taken together, these studies suggest SIRT1 activation as a promising therapeutic approach in atherosclerosis. Further studies are necessary to better understand the exact role of SIRT1 in the protagonist cells orchestrating atherogenesis and to identify the specificity, target effects and putative off-target effects of these promising SIRT1 activators.


PLOS ONE | 2011

Hyperactive S6K1 Mediates Oxidative Stress and Endothelial Dysfunction in Aging: Inhibition by Resveratrol

Angana Gupta Rajapakse; Gautham Yepuri; João Miguel Carvas; Sokrates Stein; Christian M. Matter; Isabelle Scerri; Jean Ruffieux; Jean-Pierre Montani; Xiu-Fen Ming; Zhihong Yang

Mammalian target of rapamycin (mTOR)/S6K1 signalling emerges as a critical regulator of aging. Yet, a role of mTOR/S6K1 in aging-associated vascular endothelial dysfunction remains unknown. In this study, we investigated the role of S6K1 in aging-associated endothelial dysfunction and effects of the polyphenol resveratrol on S6K1 in aging endothelial cells. We show here that senescent endothelial cells displayed higher S6K1 activity, increased superoxide production and decreased bioactive nitric oxide (NO) levels than young endothelial cells, which is contributed by eNOS uncoupling. Silencing S6K1 in senescent cells reduced superoxide generation and enhanced NO production. Conversely, over-expression of a constitutively active S6K1 mutant in young endothelial cells mimicked endothelial dysfunction of the senescent cells through eNOS uncoupling and induced premature cellular senescence. Like the mTOR/S6K1 inhibitor rapamycin, resveratrol inhibited S6K1 signalling, resulting in decreased superoxide generation and enhanced NO levels in the senescent cells. Consistent with the data from cultured cells, an enhanced S6K1 activity, increased superoxide generation, and decreased bioactive NO levels associated with eNOS uncoupling were also detected in aortas of old WKY rats (aged 20–24 months) as compared to the young animals (1–3 months). Treatment of aortas of old rats with resveratrol or rapamycin inhibited S6K1 activity, oxidative stress, and improved endothelial NO production. Our data demonstrate a causal role of the hyperactive S6K1 in eNOS uncoupling leading to endothelial dysfunction and vascular aging. Resveratrol improves endothelial function in aging, at least in part, through inhibition of S6K1. Targeting S6K1 may thus represent a novel therapeutic approach for aging-associated vascular disease.


Cell Metabolism | 2013

Identification of a SIRT1 mutation in a family with type 1 diabetes

Anna Biason-Lauber; Marianne Böni-Schnetzler; Basil P. Hubbard; Karim Bouzakri; Andrea Brunner; Claudia Cavelti-Weder; Cornelia Keller; Monika Meyer-Böni; Daniel Meier; Caroline Brorsson; Katharina Timper; Gil Leibowitz; Andrea Patrignani; Rémy Bruggmann; Gino Boily; Henryk Zulewski; Andreas Geier; Jennifer Cermak; Peter J. Elliott; James L. Ellis; Christoph H. Westphal; Urs Knobel; Jyrki J. Eloranta; Julie Kerr-Conte; François Pattou; Daniel Konrad; Christian M. Matter; Adriano Fontana; Gerhard Rogler; Ralph Schlapbach

Type 1 diabetes is caused by autoimmune-mediated β cell destruction leading to insulin deficiency. The histone deacetylase SIRT1 plays an essential role in modulating several age-related diseases. Here we describe a family carrying a mutation in the SIRT1 gene, in which all five affected members developed an autoimmune disorder: four developed type 1 diabetes, and one developed ulcerative colitis. Initially, a 26-year-old man was diagnosed with the typical features of type 1 diabetes, including lean body mass, autoantibodies, T cell reactivity to β cell antigens, and a rapid dependence on insulin. Direct and exome sequencing identified the presence of a T-to-C exchange in exon 1 of SIRT1, corresponding to a leucine-to-proline mutation at residue 107. Expression of SIRT1-L107P in insulin-producing cells resulted in overproduction of nitric oxide, cytokines, and chemokines. These observations identify a role for SIRT1 in human autoimmunity and unveil a monogenic form of type 1 diabetes.


Cardiovascular Research | 2011

Sirt1 inhibition promotes in vivo arterial thrombosis and tissue factor expression in stimulated cells

Alexander Breitenstein; Sokrates Stein; Erik W. Holy; Giovanni G. Camici; Christine Lohmann; Alexander Akhmedov; Remo D. Spescha; Peter J. Elliott; Christoph H. Westphal; Christian M. Matter; Thomas F. Lüscher; Felix C. Tanner

AIMSnThe mammalian silent information regulator-two 1 (Sirt1) blunts the noxious effects of cardiovascular risk factors such as type 2 diabetes mellitus and obesity. Nevertheless, the role of Sirt1 in regulating the expression of tissue factor (TF), the key trigger of coagulation, and arterial thrombus formation remains unknown.nnnMETHODS AND RESULTSnHuman as well as mouse cell lines were used for in vitro experiments, and C57Bl/6 mice for in vivo procedures. Sirt1 inhibition by splitomicin or sirtinol enhanced cytokine-induced endothelial TF protein expression as well as surface activity, while TF pathway inhibitor protein expression did not change. Sirt1 inhibition further enhanced TF mRNA expression, TF promoter activity, and nuclear translocation as well as DNA binding of the p65 subunit of nuclear factor-kappa B (NFκB/p65). Sirt1 siRNA enhanced TF protein and mRNA expression, and this effect was reduced in NFκB/p65(-/-) mouse embryonic fibroblasts reconstituted with non-acetylatable Lys(310)-mutant NFκB/p65. Activation of the mitogen-activated protein kinases p38, c-Jun NH(2)-terminal kinase, and p44/42 (ERK) remained unaffected. In vivo, mice treated with the Sirt1 inhibitor splitomicin exhibited enhanced TF activity in the arterial vessel wall and accelerated carotid artery thrombus formation in a photochemical injury model.nnnCONCLUSIONnWe provide pharmacological and genetic evidence that Sirt1 inhibition enhances TF expression and activity by increasing NFκB/p65 activation in human endothelial cells. Furthermore, Sirt1 inhibition induces arterial thrombus formation in vivo. Hence, modulation of Sirt1 may offer novel therapeutic options for targeting thrombosis.


European Heart Journal | 2015

The Sirt1 activator SRT3025 provides atheroprotection in Apoe−/− mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression

Melroy X. Miranda; Lambertus J. van Tits; Christine Lohmann; Tasneem Arsiwala; Stephan Winnik; Anne Tailleux; Sokrates Stein; Ana P. Gomes; Vipin Suri; James L. Ellis; Thomas A. Lutz; Michael O. Hottiger; David A. Sinclair; Johan Auwerx; Kristina Schoonjans; Bart Staels; Thomas F. Lüscher; Christian M. Matter

Aims The deacetylase sirtuin 1 (Sirt1) exerts beneficial effects on lipid metabolism, but its roles in plasma LDL-cholesterol regulation and atherosclerosis are controversial. Thus, we applied the pharmacological Sirt1 activator SRT3025 in a mouse model of atherosclerosis and in hepatocyte culture. Methods and results Apolipoprotein E-deficient (Apoe−/−) mice were fed a high-cholesterol diet (1.25% w/w) supplemented with SRT3025 (3.18 g kg−1 diet) for 12 weeks. In vitro, the drug activated wild-type Sirt1 protein, but not the activation-resistant Sirt1 mutant; in vivo, it increased deacetylation of hepatic p65 and skeletal muscle Foxo1. SRT3025 treatment decreased plasma levels of LDL-cholesterol and total cholesterol and reduced atherosclerosis. Drug treatment did not change mRNA expression of hepatic LDL receptor (Ldlr) and proprotein convertase subtilisin/kexin type 9 (Pcsk9), but increased their protein expression indicating post-translational effects. Consistent with hepatocyte Ldlr and Pcsk9 accumulation, we found reduced plasma levels of Pcsk9 after pharmacological Sirt1 activation. In vitro administration of SRT3025 to cultured AML12 hepatocytes attenuated Pcsk9 secretion and its binding to Ldlr, thereby reducing Pcsk9-mediated Ldlr degradation and increasing Ldlr expression and LDL uptake. Co-administration of exogenous Pcsk9 with SRT3025 blunted these effects. Sirt1 activation with SRT3025 in Ldlr−/− mice reduced neither plasma Pcsk9, nor LDL-cholesterol levels, nor atherosclerosis. Conclusion We identify reduction in Pcsk9 secretion as a novel effect of Sirt1 activity and uncover Ldlr as a prerequisite for Sirt1-mediated atheroprotection in mice. Pharmacological activation of Sirt1 appears promising to be tested in patients for its effects on plasma Pcsk9, LDL-cholesterol, and atherosclerosis.


Current Vascular Pharmacology | 2012

SIRT1 – An Anti-Inflammatory Pathway at the Crossroads Between Metabolic Disease and Atherosclerosis

Stephan Winnik; Sokrates Stein; Christian M. Matter

Atherosclerosis is a chronic inflammatory disease that is based on the interaction between inflammatory cell subsets and specific cells in the arterial wall. SIRT1 deacetylates histone and non-histone proteins and has been implicated in protective effects of caloric restriction on lifespan and metabolic pathways in yeast, nematodes, and mice. In the vasculature of rodents, SIRT1 mediates vasodilatation through the release of endothelial nitric oxide synthase-derived nitric oxide and scavenges reactive oxygen species. Using a genetic loss-of-function approach, SIRT1 has been shown to interfere with crucial steps of endothelial activation and atherogenesis by suppressing NFκB signaling: Partial SIRT1 deletion in ApoE-/- mice prevented expression of endothelial adhesion molecules thereby hampering the extravasation of circulating monocytes. In monocyte-derived macrophages SIRT1 deletion reduced the expression of the scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (Lox-1) resulting in reduced foam cell formation and atherosclerosis. Moreover, it was reported that SIRT1 regulates the activity of liver X-receptor, thereby promoting ABCA1-driven reverse cholesterol transport in plaque-resident macrophages slowing foam cell formation. Finally, SIRT1 suppressed the expression of endothelial tissue factor, and thus exerted anti-thrombotic properties during induced carotid thrombosis in mice. These findings indicate protective effects of SIRT1 in atherogenesis and thrombosis at an experimental level and highlight the opportunity to translate this concept from bench to bedside. Indeed, SIRT1 activators are available and have been shown to exert beneficial effects at the preclinical level in obesity and type 2 diabetes mellitus (T2DM). SIRT1 activators are currently being evaluated in phase II clinical trials in patients with T2DM. The concept of SIRT1 activation appears a promising strategy for novel therapeutic approaches in patients with atherothrombosis.


Basic Research in Cardiology | 2014

Deletion of Sirt3 does not affect atherosclerosis but accelerates weight gain and impairs rapid metabolic adaptation in LDL receptor knockout mice: implications for cardiovascular risk factor development

Stephan Winnik; Daniel S. Gaul; Frédéric Preitner; Christine Lohmann; Julien Weber; Melroy X. Miranda; Yilei Liu; Lambertus J. van Tits; José María Mateos; Chad Brokopp; Johan Auwerx; Bernard Thorens; Thomas F. Lüscher; Christian M. Matter

Sirt3 is a mitochondrial NAD+-dependent deacetylase that governs mitochondrial metabolism and reactive oxygen species homeostasis. Sirt3 deficiency has been reported to accelerate the development of the metabolic syndrome. However, the role of Sirt3 in atherosclerosis remains enigmatic. We aimed to investigate whether Sirt3 deficiency affects atherosclerosis, plaque vulnerability, and metabolic homeostasis. Low-density lipoprotein receptor knockout (LDLR−/−) and LDLR/Sirt3 double-knockout (Sirt3−/−LDLR−/−) mice were fed a high-cholesterol diet (1.25xa0% w/w) for 12xa0weeks. Atherosclerosis was assessed en face in thoraco-abdominal aortae and in cross sections of aortic roots. Sirt3 deletion led to hepatic mitochondrial protein hyperacetylation. Unexpectedly, though plasma malondialdehyde levels were elevated in Sirt3-deficient mice, Sirt3 deletion affected neither plaque burden nor features of plaque vulnerability (i.e., fibrous cap thickness and necrotic core diameter). Likewise, plaque macrophage and T cell infiltration as well as endothelial activation remained unaltered. Electron microscopy of aortic walls revealed no difference in mitochondrial microarchitecture between both groups. Interestingly, loss of Sirt3 was associated with accelerated weight gain and an impaired capacity to cope with rapid changes in nutrient supply as assessed by indirect calorimetry. Serum lipid levels and glucose tolerance were unaffected by Sirt3 deletion in LDLR−/− mice. Sirt3 deficiency does not affect atherosclerosis in LDLR−/− mice. However, Sirt3 controls systemic levels of oxidative stress, limits expedited weight gain, and allows rapid metabolic adaptation. Thus, Sirt3 may contribute to postponing cardiovascular risk factor development.


PLOS ONE | 2010

ApoE−/− PGC-1α−/− Mice Display Reduced IL-18 Levels and Do Not Develop Enhanced Atherosclerosis

Sokrates Stein; Christine Lohmann; Christoph Handschin; Elin Stenfeldt; Jan Borén; Thomas F. Lüscher; Christian M. Matter

Background Atherosclerosis is a chronic inflammatory disease that evolves from the interaction of activated endothelial cells, macrophages, lymphocytes and modified lipoproteins (LDLs). In the last years many molecules with crucial metabolic functions have been shown to prevent important steps in the progression of atherogenesis, including peroxisome proliferator activated receptors (PPARs) and the class III histone deacetylase (HDAC) SIRT1. The PPARγ coactivator 1 alpha (Ppargc1a or PGC-1α) was identified as an important transcriptional cofactor of PPARγ and is activated by SIRT1. The aim of this study was to analyze total PGC-1α deficiency in an atherosclerotic mouse model. Methodology/Principal Findings To investigate if total PGC-1α deficiency affects atherosclerosis, we compared ApoE−/− PGC-1α−/− and ApoE−/− PGC-1α+/+ mice kept on a high cholesterol diet. Despite having more macrophages and a higher ICAM-1 expression in plaques, ApoE−/− PGC-1α−/− did not display more or larger atherosclerotic plaques than their ApoE−/− PGC-1α+/+ littermates. In line with the previously published phenotype of PGC-1α−/− mice, ApoE−/− PGC-1α−/− mice had marked reduced body, liver and epididymal white adipose tissue (WAT) weight. VLDL/LDL-cholesterol and triglyceride contents were also reduced. Aortic expression of PPARα and PPARγ, two crucial regulators for adipocyte differentitation and glucose and lipid metabolism, as well as the expression of some PPAR target genes was significantly reduced in ApoE−/− PGC-1α−/− mice. Importantly, the epididymal WAT and aortic expression of IL-18 and IL-18 plasma levels, a pro-atherosclerotic cytokine, was markedly reduced in ApoE−/− PGC-1α−/− mice. Conclusions/Significance ApoE−/− PGC-1α−/− mice, similar as PGC-1α−/− mice exhibit markedly reduced total body and visceral fat weight. Since inflammation of visceral fat is a crucial trigger of atherogenesis, decreased visceral fat in PGC-1α-deficient mice may explain why these mice do not develop enhanced atherosclerosis.


Cardiovascular Research | 2011

Beneficial effects of combinatorial micronutrition on body fat and atherosclerosis in mice.

Ilhem El Kochairi; Alexandra Montagner; Gianpaolo Rando; Christine Lohmann; Christian M. Matter; Walter Wahli

Aims More than two billion people worldwide are deficient in key micronutrients. Single micronutrients have been used at high doses to prevent and treat dietary insufficiencies. Yet the impact of combinations of micronutrients in small doses aiming to improve lipid disorders and the corresponding metabolic pathways remains incompletely understood. Thus, we investigated whether a combination of micronutrients would reduce fat accumulation and atherosclerosis in mice. Methods and results Lipoprotein receptor-null mice fed with an original combination of micronutrients incorporated into the daily chow showed reduced weight gain, body fat, plasma triglycerides, and increased oxygen consumption. These effects were achieved through enhanced lipid utilization and reduced lipid accumulation in metabolic organs and were mediated, in part, by the nuclear receptor PPARα. Moreover, the micronutrients partially prevented atherogenesis when administered early in life to apolipoprotein E-null mice. When the micronutrient treatment was started before conception, the anti-atherosclerotic effect was stronger in the progeny. This finding correlated with decreased post-prandial triglyceridaemia and vascular inflammation, two major atherogenic factors. Conclusion Our data indicate beneficial effects of a combination of micronutritients on body weight gain, hypertriglyceridaemia, liver steatosis, and atherosclerosis in mice, and thus our findings suggest a novel cost-effective combinatorial micronutrient-based strategy worthy of being tested in humans.

Collaboration


Dive into the Christian M. Matter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge