Caroline Drong
Friedrich Loeffler Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Caroline Drong.
Journal of Dairy Science | 2017
Melanie Schären; Caroline Drong; Kerstin Kiri; Susanne Riede; Mark C. Gardener; Ulrich Meyer; Jürgen Hummel; Tim Urich; Gerhard Breves; Sven Dänicke
In response to oral application, monensin alters the rumen microbiota, increasing ruminal propionate production and energy availability in the animal. Data from different studies indicate that the susceptibility of rumen bacteria to monensin is mainly cell-wall dependent but tracing its activity to specific microbial groups has been challenging. Several studies have shown a similar effect for essential oils but results are inconsistent. To investigate the influence of monensin and a blend of essential oils (BEO, containing thymol, guaiacol, eugenol, vanillin, salicylaldehyde, and limonene) on the rumen microbiome, rumen liquid samples were collected orally on d 56 postpartum from cows that had either received a monensin controlled-release capsule 3 wk antepartum, a diet containing a BEO from 3 wk antepartum onward, or a control diet (n = 12). The samples were analyzed for pH, volatile fatty acid, ammonia, and lipopolysaccharide concentrations and protozoal counts. A 16S rRNA gene fingerprinting analysis (PCR-single-strand conformation polymorphism) and sequencing revealed that the BEO treatment had no effect on the rumen microbiota, whereas monensin decreased bacterial diversity. Twenty-three bacterial species-level operational taxonomic units were identified for which monensin caused a significant decrease in their relative abundance, all belonging to the phyla Bacteroidetes (uncultured BS11 gut group and BS9 gut group) and Firmicutes (Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae). Ten bacterial operational taxonomic units belonging to the phyla Actinobacteria (Coriobacteriaceae), Bacteroidetes (Prevotella), Cyanobacteria (SHA-109), and Firmicutes (Lachnospiraceae and Ruminococcaceae) increased in relative abundance due to the monensin treatment. These results confirm the hypothesis that varying effects depending on cell-wall constitution and thickness might apply for monensin sensitivity rather than a clear-cut difference between gram-negative and gram-positive bacteria. No effect of monensin on the archaea population was observed, confirming the assumption that reported inhibition of methanogenesis is most likely caused through a decrease in substrate availability, rather than by a direct effect on the methanogens. The data support the hypothesis that the observed increase in ruminal molar propionate proportions due to monensin may be caused by a decrease in abundance of non-producers and moderate producers of propionate and an increase in abundance of succinate and propionate producers.
Journal of Dairy Science | 2017
Stephanie Schäfers; D. von Soosten; Ulrich Meyer; Caroline Drong; Jana Frahm; Jeannette Kluess; C. Raschka; J. Rehage; A. Tröscher; W. Pelletier; Sven Dänicke
The objective of this experiment was to determine the effects of conjugated linoleic acid (CLA) and vitamin E as well as their interaction on performance variables and lipomobilization during late pregnancy and early lactation (wk 6 antepartum until wk 10 postpartum). For this purpose, 59 pluriparous German Holstein cows were assigned to 4 dietary groups in a 2 × 2 design with the factors CLA and vitamin E at 2 levels. For this trial, we selected cows with a high body condition score because they are more likely to mobilize fat and consequently are at a higher risk of developing ketosis. Furthermore, concentrate proportions were adjusted to provoke ketosis. Lactation performance variables were analyzed in 3 periods (d 42 antepartum until calving, 1 to 21 d in milk, 22 to 70 d in milk). Dry matter intake and net energy intake were reduced in animals receiving CLA. Milk fat content was reduced in the CLA group compared with the control group (4.83 vs. 5.46% in period 2; 3.36 vs. 4.57% in period 3). In the vitamin E and the CLA + vitamin E groups, reduction of milk fat content was observed in period 3 (3.76 vs. 4.57% compared with the control group). Milk yield was not affected by treatment. β-Hydroxybutyrate concentrations and liver lipid contents were not influenced by CLA or vitamin E. Moreover, longitudinal changes of adipose tissue depot mass were not affected by dietary treatments. Results suggest that the effects CLA had on milk composition were compensated by an increased milk yield and a decreased dry matter intake. Reduced milk energy output in CLA-treated animals was compensated by a reduced dry matter intake. Therefore, the net energy balance was not affected by either treatment. Consequently, we found no group effect on the mobilization of adipose tissue.
Veterinary Immunology and Immunopathology | 2015
Melanie Eger; Jamal Hussen; Caroline Drong; Ulrich Meyer; Dirk von Soosten; Jana Frahm; Sven Daenicke; Gerhard Breves; Hans-Joachim Schuberth
The peripartal period of dairy cows is associated with a higher incidence of infectious diseases like mastitis or metritis, particularly in high-yielding animals. The onset of lactation induces a negative energy balance and a shift of glucose distribution toward the udder. Glucose is used as primary fuel by monocytes which give rise to macrophages, key cells in the defense against pathogens. The aim of this study was to analyze whether animals with high or low body condition score (BCS) differ in composition and glucose uptake capacities of bovine monocyte subsets. Blood samples were taken from 27 dairy cows starting 42 days before parturition until day 56 after parturition. The cows were allocated to two groups according to their BCS. A feeding regime was applied, in which the BCS high group received higher amounts of concentrate before parturition and concentrate feeding was more restricted in the BCS high group after parturition compared with the BCS low group, to promote postpartal lipolysis and enhance negative energy balance in the BCS high group. Blood cell counts of classical (cM), intermediate (intM) and nonclassical monocytes (ncM) were increased at day 7 after calving. In the BCS low group intM numbers were significantly higher compared to the BCS high group at day 7 after parturition. Within the BCS low group cows suffering from mastitis or metritis showed significantly higher numbers of cM, intM and ncM at day 7 after parturition. Classical monocytes and intM showed similar glucose uptake capacities while values for ncM were significantly lower. Compared with antepartal capacities and irrespective of BCS and postpartal mastitis or metritis, glucose uptake of all monocyte subsets decreased after parturition. In conclusion, whereas glucose uptake capacity of bovine monocyte subsets is altered by parturition, it is not linked to the energy supply of the animals or to postpartal infectious diseases.
Journal of Veterinary Science & Medical Diagnosis | 2016
Liane Hüther; Julia Hartwiger; Caroline Drong; Ulrich Meyer; Sven Dänicke
Simultaneous Determination of Tryptophan, Kynurenine and Niacin in Serum of Periparturient Dairy Cows by High-Performance Liquid Chromatography with Diode Array Detection Tryptophan is an essential amino acid and substrate for important biochemical pathways, e.g. generating the neurotransmitter serotonin or building kynurenine and nicotinamide via the kynurenine pathway which can be induced by the enzyme tryptophan 2,3-dioxygenase (TDO) via glucocorticoid hormones or by indoleamine 2,3-dioxygenase (IDO) after immune activation. As the kynurenine to tryptophan ratio is regarded as indicator for an activated immune system, we developed an analytical method for the simultaneous determination of kynurenine, tryptophan and nicotinamide in serum via high-performance liquid chromatography (HPLC) und assessed their suitability as inflammatory markers in dairy cows. Validation parameters have shown that the HPLC method meets the requirements for routine analysis of tryptophan and its metabolites kynurenine and nicotinamide in serum with high linearity within the respective working ranges and limits of quantifications of 0.41 µmol L-1 for nicotinamide, 0.43 µmol L-1 for kynurenine and 3.40 µmol L-1 for tryptophan. The intra-day and inter-day variations were 2.3 and 3.6% (nicotinamide), 3.1 and 6.3% (kynurenine) and 1.9 and 5.2% (tryptophan), respectively. Tryptophan degradation via the kynurenine pathway was investigated in 10 periparturient dairy cows out of two dietary groups during the transition period. The course of tryptophan concentrations in cow serum around calving was similar to those found in pregnant women with a decrease until birth, followed by increased and normalized postpartum tryptophan concentrations. However, rising kynurenine concentrations and a simultaneous incline of the kynurenine to tryptophan ratio during gestation could not be confirmed in our study, apart from a peak of the kynurenine to tryptophan ratio at parturition which might be due to stress hormone-induced activation of hepatic TDO and extrahepatic IDO. Additional measurements of interferon-γ and glucocorticoids as putative inductors of TDO and IDO would be useful to verify the suitability of the kynurenine to tryptophan ratio as an immune marker in the bovine.
Journal of Dairy Science | 2018
Stephanie Schäfers; D. von Soosten; Ulrich Meyer; Caroline Drong; Jana Frahm; A. Tröscher; W. Pelletier; H. Sauerwein; Sven Dänicke
The objective of this experiment was to determine the effects of conjugated linoleic acid (CLA) and vitamin E as well as their interaction on biochemical and hematological variables and on leukocyte populations and their functionality. We assigned 59 German Holstein cows between the 2nd and 9th lactation to 4 dietary groups in a 2 × 2 factorial design with the factors CLA and vitamin E. Six weeks before calving the cows had a BCS of 3.7 to provoke a higher risk of developing ketosis, which might impair their immune function. Blood samples for analyses were taken on d -42, -14, -7, -3, 1, 3, 7, 10, 14, 21, 28, 35, 42, 56, and 70 relative to parturition. Furthermore, peripheral blood mononuclear cells were cultured on d -42, -7, 1, 7, 14, 28, and 70 relative to calving. Most variables were characterized by a high variation between d 7 antepartum and d 7 postpartum. Treatments did not elicit any effect, with the exception of vitamin E, which increased serum urea concentrations and decreased monocyte percentages. Haptoglobin, aspartate-aminotransferase, red blood cell count, leukocyte percentage and populations, as well as peripheral blood mononuclear cells were influenced by parity. In conclusion, the impairment of immune function caused by calving was more severe in cows in ≥3rd parity than in younger cows. However, neither vitamin E nor CLA supplementation was successful to stabilize parity or parturition related variance in hematological and immunological traits.
Journal of Animal Physiology and Animal Nutrition | 2016
Caroline Drong; Ulrich Meyer; Dirk von Soosten; Jana Frahm; J. Rehage; G. Breves; Sven Dänicke
Journal of Animal Physiology and Animal Nutrition | 2017
Caroline Drong; Ulrich Meyer; D. von Soosten; Jana Frahm; J. Rehage; H. Schirrmeier; M. Beer; Sven Dänicke
Journal of Dairy Science | 2017
Caroline Drong; S. Bühler; Jana Frahm; Liane Hüther; Ulrich Meyer; D. von Soosten; Denise K. Gessner; Klaus Eder; H. Sauerwein; Sven Dänicke
Journal of Animal Physiology and Animal Nutrition | 2018
Stephanie Schäfers; Ulrich Meyer; D. von Soosten; Liane Hüther; Caroline Drong; Klaus Eder; Erika Most; A. Tröscher; W. Pelletier; Annette Zeyner; Sven Dänicke
The 29th World Buiatrics Congress, Dublin 2016 : Congress Proceedings | 2016
G. Szura; Caroline Drong; C. Raschka; Ulrich Meyer; Dirk von Soosten; G. Breves; Sven Dänicke; J. Rehage