Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caroline Fonta is active.

Publication


Featured researches published by Caroline Fonta.


Journal of Microscopy | 2004

X-ray high-resolution vascular network imaging

Franck Plouraboué; Peter Cloetens; Caroline Fonta; Alexandre Steyer; Frédéric Lauwers; J. P Marc-Vergnes

This paper presents the first application of high‐resolution X‐ray synchrotron tomography to the imaging of large microvascular networks in biological tissue samples. This technique offers the opportunity of analysing the full three‐dimensional vascular network from the micrometre to the millimetre scale. This paper presents the specific sample preparation method and the X‐ray imaging procedure. Either barium or iron was injected as contrast agent in the vascular network. The impact of the composition and concentration of the injected solution on the X‐ray synchrotron tomography images has been studied. Two imaging modes, attenuation and phase contrast, are compared. Synchrotron high‐resolution computed tomography offers new prospects in the three‐dimensional imaging of in situ biological vascular networks.


Physics in Medicine and Biology | 2009

Synchrotron microbeam radiation therapy for rat brain tumor palliation—influence of the microbeam width at constant valley dose

Raphaël Serduc; Audrey Bouchet; Elke Bräuer-Krisch; Jean A. Laissue; Jenny Spiga; Sukhéna Sarun; Alberto Bravin; Caroline Fonta; Luc Renaud; Jean Boutonnat; Erik Albert Siegbahn; François Estève; Géraldine Le Duc

To analyze the effects of the microbeam width (25, 50 and 75 microm) on the survival of 9L gliosarcoma tumor-bearing rats and on toxicity in normal tissues in normal rats after microbeam radiation therapy (MRT), 9L gliosarcomas implanted in rat brains, as well as in normal rat brains, were irradiated in the MRT mode. Three configurations (MRT25, MRT50, MRT75), each using two orthogonally intersecting arrays of either 25, 50 or 75 microm wide microbeams, all spaced 211 microm on center, were tested. For each configuration, peak entrance doses of 860, 480 and 320 Gy, respectively, were calculated to produce an identical valley dose of 18 Gy per individual array at the center of the tumor. Two, 7 and 14 days after radiation treatment, 42 rats were killed to evaluate histopathologically the extent of tumor necrosis, and the presence of proliferating tumors cells and tumor vessels. The median survival times of the normal rats were 4.5, 68 and 48 days for MRT25, 50 and 75, respectively. The combination of the highest entrance doses (860 Gy per array) with 25 microm wide beams (MRT25) resulted in a cumulative valley dose of 36 Gy and was excessively toxic, as it led to early death of all normal rats and of approximately 50% of tumor-bearing rats. The short survival times, particularly of rats in the MRT25 group, restricted adequate observance of the therapeutic effect of the method on tumor-bearing rats. However, microbeams of 50 microm width led to the best median survival time after 9L gliosarcoma MRT treatment and appeared as the better compromise between tumor control and normal brain toxicity compared with 75 microm or 25 microm widths when used with a 211 microm on-center distance. Despite very high radiation doses, the tumors were not sterilized; viable proliferating tumor cells remained present at the tumor margin. This study shows that microbeam width and peak entrance doses strongly influence tumor responses and normal brain toxicity, even if valley doses are kept constant in all groups. The use of 50 microm wide microbeams combined with moderate peak doses resulted in a higher therapeutic ratio.


Journal of Cerebral Blood Flow and Metabolism | 2010

Cerebral blood flow modeling in primate cortex

Romain Guibert; Caroline Fonta; Franck Plouraboué

We report new results on blood flow modeling over large volumes of cortical gray matter of primate brain. We propose a network method for computing the blood flow, which handles realistic boundary conditions, complex vessel shapes, and complex nonlinear blood rheology. From a detailed comparison of the available models for the blood flow rheology and the phase separation effect, we are able to derive important new results on the impact of network structure on blood pressure, hematocrit, and flow distributions. Our findings show that the network geometry (vessel shapes and diameters), the boundary conditions associated with the arterial inputs and venous outputs, and the effective viscosity of the blood are essential components in the flow distribution. In contrast, we show that the phase separation effect has a minor function in the global microvascular hemodynamic behavior. The behavior of the pressure, hematocrit, and blood flow distributions within the network are described through the depth of the primate cerebral cortex and are discussed.


International Journal of Developmental Neuroscience | 2009

A 3D-investigation shows that angiogenesis in primate cerebral cortex mainly occurs at capillary level

Laurent Risser; Franck Plouraboué; Peter Cloetens; Caroline Fonta

This paper describes the use of a new 3D high‐resolution imaging technique dedicated to functional vessels for a systematic quantitative study of angiogenesis in the primate cortex. We present a new method which permits, using synchrotron X‐ray micro‐tomography imaging, the identification of micro‐vascular components as well as their automatic numerical digitalization and extraction from very large 3D image analysis and post‐treatments. This method is used to analyze various levels of micro‐vascular organization and their postnatal modifications. Comparing newborn‐ and adult marmosets, we found an increase in vascular volume (270%), exchange surface (260%) and vessel length (290%) associated to a decrease in distances between vessel and tissue (32%). The increase in relative vascular volumes between the two ages, examined through the whole cortical depth, has been found to be mainly sustained by events occurring at the capillary level, and only marginally at the perforating vessel level. This work shows that the postnatal cortical maturation classically described in terms of synaptogenesis, gliogenesis and connectivity plasticity is accompanied by an intensive remodeling of micro‐vascular patterns.


Neuroscience | 2011

LAYER-SPECIFIC ACTIVITY OF TISSUE NON-SPECIFIC ALKALINE PHOSPHATASE IN THE HUMAN NEOCORTEX

László Négyessy; J. Xiao; O. Kántor; Gabor G. Kovacs; Miklós Palkovits; Tamás Dóczi; L. Renaud; G. Baksa; T. Glasz; M. Ashaber; P. Barone; Caroline Fonta

The ectoenzyme tissue non-specific alkaline phosphatase (TNAP) is mostly known for its role in bone mineralization. However, in the severe form of hypophosphatasia, TNAP deficiency also results in epileptic seizures, suggesting a role of this enzyme in brain functions. Accordingly, TNAP activity was shown in the neuropil of the cerebral cortex in diverse mammalian species. However in spite of its clinical significance, the neuronal localization of TNAP has not been investigated in the human brain. By using enzyme histochemistry, we found an unprecedented pattern of TNAP activity appearing as an uninterrupted layer across diverse occipital-, frontal- and temporal lobe areas of the human cerebral cortex. This marked TNAP-active band was localized infragranulary in layer 5 as defined by quantitative comparisons on parallel sections stained by various techniques to reveal the laminar pattern. On the contrary, TNAP activity was localized in layer 4 of the primary visual and somatosensory cortices, which is consistent with earlier observations on other species. This result suggests that the expression of TNAP in the thalamo-recipient granular layer is an evolutionary conserved feature of the sensory cortex. The observations of the present study also suggest that diverse neurocognitive functions share a common cerebral cortical mechanism depending on TNAP activity in layer 5. In summary, the present data point on the distinctive role of layer 5 in cortical computation and neurological disorders caused by TNAP dysfunctions in the human brain.


Cell and Tissue Research | 2011

Differential expression of the bone and the liver tissue non-specific alkaline phosphatase isoforms in brain tissues

Isabelle Brun-Heath; Myriam Ermonval; Elodie Chabrol; Jinsong Xiao; Miklós Palkovits; Ruth Lyck; Florence Miller; Pierre Olivier Couraud; Etienne Mornet; Caroline Fonta

The enzyme tissue non-specific alkaline phosphatase (TNAP) belongs to the ectophosphatase family. It is present in large amounts in bone in which it plays a role in mineralization but little is known about its function in other tissues. Arguments are accumulating for its involvement in the brain, in particular in view of the neurological symptoms accompanying human TNAP deficiencies. We have previously shown, by histochemistry, alkaline phosphatase (AP) activity in monkey brain vessels and parenchyma in which AP exhibits specific patterns. Here, we clearly attribute this activity to TNAP expression rather than to other APs in primates (human and marmoset) and in rodents (rat and mouse). We have not found any brain-specific transcripts but our data demonstrate that neuronal and endothelial cells exclusively express the bone TNAP transcript in all species tested, except in mouse neurons in which liver TNAP transcripts have also been detected. Moreover, we highlight the developmental regulation of TNAP expression; this also acts during neuronal differentiation. Our study should help to characterize the regulation of the expression of this ectophosphatase in various cell types of the central nervous system.


Cell and Tissue Research | 2012

Ablation of TNAP function compromises myelination and synaptogenesis in the mouse brain.

János Hanics; János Barna; Jinsong Xiao; José Luis Millán; Caroline Fonta; László Négyessy

Mutations in the tissue-nonspecific alkaline phosphatase (TNAP) gene can result in skeletal and dental hypomineralization and severe neurological symptoms. TNAP is expressed in the synaptic cleft and the node of Ranvier in normal adults. Using TNAP knockout (KO) mice (Akp2-/-), we studied synaptogenesis and myelination with light- and electron microscopy during the early postnatal days. Ablation of TNAP function resulted in a significant decrease of the white matter of the spinal cord accompanied by ultrastructural evidence of cellular degradation around the paranodal regions and a decreased ratio and diameter of the myelinated axons. In the cerebral cortex, myelinated axons, while present in wild-type, were absent in the Akp2-/- mice and these animals also displayed a significantly increased proportion of immature cortical synapses. The results suggest that TNAP deficiency could contribute to neurological symptoms related to myelin abnormalities and synaptic dysfunction, among which epilepsy, consistently present in the Akp2-/- mice and observed in severe cases of hypophosphatasia.


Sub-cellular biochemistry | 2015

Tetramisole and Levamisole Suppress Neuronal Activity Independently from Their Inhibitory Action on Tissue Non-specific Alkaline Phosphatase in Mouse Cortex

Lionel G. Nowak; Benoît Rosay; Dávid Czégé; Caroline Fonta

Tissue non-specific alkaline phosphatase (TNAP) may be involved in the synthesis of GABA and adenosine, which are the main inhibitory neurotransmitters in cortex. We explored this putative TNAP function through electrophysiological recording (local field potential ) in slices of mouse somatosensory cortex maintained in vitro. We used tetramisole, a well documented TNAP inhibitor, to block TNAP activity. We expected that inhibiting TNAP with tetramisole would lead to an increase of neuronal response amplitude, owing to a diminished availability of GABA and/or adenosine. Instead, we found that tetramisole reduced neuronal response amplitude in a dose-dependent manner. Tetramisole also decreased axonal conduction velocity. Levamisole had identical effects. Several control experiments demonstrated that these actions of tetramisole were independent from this compound acting on TNAP. In particular, tetramisole effects were not stereo-specific and they were not mimicked by another inhibitor of TNAP, MLS-0038949. The decrease of axonal conduction velocity and preliminary intracellular data suggest that tetramisole blocks voltage-dependent sodium channels. Our results imply that levamisole or tetramisole should not be used with the sole purpose of inhibiting TNAP in living excitable cells as it will also block all processes that are activity-dependent. Our data and a review of the literature indicate that tetramisole may have at least four different targets in the nervous system. We discuss these results with respect to the neurological side effects that were observed when levamisole and tetramisole were used for medical purposes, and that may recur nowadays due to the recent use of levamisole and tetramisole as cocaine adulterants.


Journal of Neurochemistry | 2017

Identification of altered brain metabolites associated with TNAP activity in a mouse model of hypophosphatasia using untargeted NMR‐based metabolomics analysis

Thomas Cruz; Marie Gleizes; Stéphane Balayssac; Etienne Mornet; Grégory Marsal; José Luis Millán; Myriam Malet-Martino; Lionel G. Nowak; Véronique Gilard; Caroline Fonta

Tissue non‐specific alkaline phosphatase (TNAP) is a key player of bone mineralization and TNAP gene (ALPL) mutations in human are responsible for hypophosphatasia (HPP), a rare heritable disease affecting the mineralization of bones and teeth. Moreover, TNAP is also expressed by brain cells and the severe forms of HPP are associated with neurological disorders, including epilepsy and brain morphological anomalies. However, TNAPs role in the nervous system remains poorly understood. To investigate its neuronal functions, we aimed to identify without any a priori the metabolites regulated by TNAP in the nervous tissue. For this purpose we used 1H‐ and 31P NMR to analyze the brain metabolome of Alpl (Akp2) mice null for TNAP function, a well‐described model of infantile HPP. Among 39 metabolites identified in brain extracts of 1‐week‐old animals, eight displayed significantly different concentration in Akp2−/− compared to Akp2+/+ and Akp2+/− mice: cystathionine, adenosine, GABA, methionine, histidine, 3‐methylhistidine, N‐acetylaspartate (NAA), and N‐acetyl‐aspartyl‐glutamate, with cystathionine and adenosine levels displaying the strongest alteration. These metabolites identify several biochemical processes that directly or indirectly involve TNAP function, in particular through the regulation of ecto‐nucleotide levels and of pyridoxal phosphate‐dependent enzymes. Some of these metabolites are involved in neurotransmission (GABA, adenosine), in myelin synthesis (NAA, NAAG), and in the methionine cycle and transsulfuration pathway (cystathionine, methionine). Their disturbances may contribute to the neurodevelopmental and neurological phenotype of HPP.


Cell and Tissue Research | 2014

TNAP activity is localized at critical sites of retinal neurotransmission across various vertebrate species.

Orsolya Kántor; Alexandra Varga; Tamás Kovács-Öller; Anna Énzsöly; Lajos Balogh; Gabor Baksa; Zsuzsanna Szepessy; Caroline Fonta; Anna W. Roe; Roland Nitschke; Ágoston Szél; László Négyessy; Béla Völgyi; Ákos Lukáts

Evidence is emerging with regard to the role of tissue non-specific alkaline phosphatase (TNAP) in neural functions. As an ectophosphatase, this enzyme might influence neural activity and synaptic transmission in diverse ways. The localization of the enzyme in known neural circuits, such as the retina, might significantly advance an understanding of its role in normal and pathological functioning. However, the presence of TNAP in the retina is scarcely investigated. Our multispecies comparative study (zebrafish, cichlid, frog, chicken, mouse, rat, golden hamster, guinea pig, rabbit, sheep, cat, dog, ferret, squirrel monkey, human) using enzyme histochemistry and Western blots has shown the presence of TNAP activity in the retina of several mammalian species, including humans. Although the TNAP activity pattern varies across species, we have observed the following trends: (1) in all investigated species (except golden hamster), retinal vessels display TNAP activity; (2) TNAP activity consistently occurs in the photoreceptor layer; (3) in majority of the investigated species, marked TNAP activity is present in the outer and inner plexiform layers. In zebrafish, frog, chicken, guinea pig, and rat, TNAP histochemistry has revealed several sublayers of the inner plexiform layer. Frog, golden hamster, guinea pig, mouse, and human retinas possess a subpopulation of amacrine cells positively staining for TNAP activity. The expression of TNAP in critical sites of retinal signal transmission across a wide range of species suggests its fundamental, evolutionally conserved role in vision.

Collaboration


Dive into the Caroline Fonta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luc Renaud

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge