Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caroline Guittard is active.

Publication


Featured researches published by Caroline Guittard.


Human Mutation | 2000

Spectrum of CFTR mutations in cystic fibrosis and in congenital absence of the vas deferens in France

Mireille Claustres; Caroline Guittard; Dominique Bozon; Francoise Chevalier; Claudine Verlingue; Claude Férec; Emanuelle Girodon; Cécile Cazeneuve; Thierry Bienvenu; Guy Lalau; Viviane Dumur; Delphine Feldmann; Eric Bieth; Martine Blayau; Christine Clavel; Isabelle Creveaux; M.-C. Malinge; Nicole Monnier; Perrine Malzac; Hervé Mittre; Jean‐Claude Chomel; Jean-Paul Bonnefont; Albert Iron; Michèle Chery; Marie Des Georges

We have collated the results of cystic fibrosis (CF) mutation analysis conducted in 19 laboratories in France. We have analyzed 7,420 CF alleles, demonstrating a total of 310 different mutations including 24 not reported previously, accounting for 93.56% of CF genes. The most common were F508del (67.18%; range 61–80), G542X (2.86%; range 1–6.7%), N1303K (2.10%; range 0.75–4.6%), and 1717‐1G>A (1.31%; range 0–2.8%). Only 11 mutations had relative frequencies >0.4%, 140 mutations were found on a small number of CF alleles (from 29 to two), and 154 were unique. These data show a clear geographical and/or ethnic variation in the distribution of the most common CF mutations. This spectrum of CF mutations, the largest ever reported in one country, has generated 481 different genotypes. We also investigated a cohort of 800 French men with congenital bilateral absence of the vas deferens (CBAVD) and identified a total of 137 different CFTR mutations. Screening for the most common CF defects in addition to assessment for IVS8‐5T allowed us to detect two mutations in 47.63% and one in 24.63% of CBAVD patients. In a subset of 327 CBAVD men who were more extensively investigated through the scanning of coding/flanking sequences, 516 of 654 (78.90%) alleles were identified, with 15.90% and 70.95% of patients carrying one or two mutations, respectively, and only 13.15% without any detectable CFTR abnormality. The distribution of genotypes, classified according to the expected effect of their mutations on CFTR protein, clearly differed between both populations. CF patients had two severe mutations (87.77%) or one severe and one mild/variable mutation (11.33%), whereas CBAVD men had either a severe and a mild/variable (87.89%) or two mild/variable (11.57%) mutations. Hum Mutat 16:143–156, 2000.


American Journal of Human Genetics | 2004

Variation in a Repeat Sequence Determines Whether a Common Variant of the Cystic Fibrosis Transmembrane Conductance Regulator Gene Is Pathogenic or Benign

Joshua D. Groman; Timothy W. Hefferon; Teresa Casals; Lluís Bassas; Xavier Estivill; Marie des Georges; Caroline Guittard; Monika Koudova; M. Daniele Fallin; Krisztina Németh; György Fekete; Ludovit Kadasi; Ken Friedman; Martin Schwarz; Cristina Bombieri; Pier Franco Pignatti; Emmanuel Kanavakis; Maria Tzetis; Marianne Schwartz; Giuseppe Novelli; Maria Rosaria D’Apice; Agnieszka Sobczyńska-Tomaszewska; Jerzy Bal; Manfred Stuhrmann; Milan Macek; Mireille Claustres; Garry R. Cutting

An abbreviated tract of five thymidines (5T) in intron 8 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene is found in approximately 10% of individuals in the general population. When found in trans with a severe CFTR mutation, 5T can result in male infertility, nonclassic cystic fibrosis, or a normal phenotype. To test whether the number of TG repeats adjacent to 5T influences disease penetrance, we determined TG repeat number in 98 patients with male infertility due to congenital absence of the vas deferens, 9 patients with nonclassic CF, and 27 unaffected individuals (fertile men). Each of the individuals in this study had a severe CFTR mutation on one CFTR gene and 5T on the other. Of the unaffected individuals, 78% (21 of 27) had 5T adjacent to 11 TG repeats, compared with 9% (10 of 107) of affected individuals. Conversely, 91% (97 of 107) of affected individuals had 12 or 13 TG repeats, versus only 22% (6 of 27) of unaffected individuals (P<.00001). Those individuals with 5T adjacent to either 12 or 13 TG repeats were substantially more likely to exhibit an abnormal phenotype than those with 5T adjacent to 11 TG repeats (odds ratio 34.0, 95% CI 11.1-103.7, P<.00001). Thus, determination of TG repeat number will allow for more accurate prediction of benign versus pathogenic 5T alleles.


Journal of Medical Genetics | 1998

Linkage disequilibrium between the M470V variant and the IVS8 polyT alleles of the CFTR gene in CBAVD.

A de Meeus; Caroline Guittard; Marie Desgeorges; Soukeyna Carles; Jacques Demaille; Mireille Claustres

Congenital bilateral absence of the vas deferens (CBAVD) is a cause of male sterility mostly resulting from mutations in the cystic fibrosis transmembrane regulator (CFTR) gene. The most common defect is the 5T variant at the branch/acceptor site of intron 8, which induces high levels of exon 9 skipping leading to non-functional protein. However, this 5T variant has incomplete penetrance and variable expressivity, suggesting that some other regulatory factors may modulate the splicing of exon 9. To identify such factors, we report here the genetic analysis of a polymorphic locus, M470V, located in exon 10 of the CFTR gene in 60 patients with CBAVD, compared to a normal control population. The statistical analysis showed strong linkage disequilibrium between the 5T allele and the V allele of the M470V polymorphism in the CBAVD population, but not in the normal population. The V allele in a gene carrying 5T could, however, contribute to lowering the level of normal transcripts, as already suggested by in vitro transcriptional studies. These genetic findings, together with previous studies, suggest involvement of the M470V variant in the modulation of the splicing of exon 9 of the CFTR gene.


BMC Medical Genetics | 2004

Are p.I148T, p.R74W and p.D1270N cystic fibrosis causing mutations ?

Mireille Claustres; Jean-Pierre Altieri; Caroline Guittard; Carine Templin; Françoise Chevalier-Porst; Marie des Georges

BackgroundTo contribute further to the classification of three CFTR amino acid changes (p.I148T, p.R74W and p.D1270N) either as CF or CBAVD-causing mutations or as neutral variations.MethodsThe CFTR genes from individuals who carried at least one of these changes were extensively scanned by a well established DGGE assay followed by direct sequencing and familial segregation analysis of mutations and polymorphisms.ResultsFour CF patients (out of 1238) originally identified as carrying the p.I148T mutation in trans with a CF mutation had a second mutation (c.3199del6 or a novel mutation c.3395insA) on the p.I148T allele. We demonstrate here that the deletion c.3199del6 can also be associated with CF without p.I148T. Three CBAVD patients originally identified with the complex allele p.R74W-p.D1270N were also carrying p.V201M on this allele, by contrast with non CF or asymptomatic individuals including the mother of a CF child, who were carrying p.R74W-p.D1270N alone.ConclusionThese findings question p.I148T or p.R74W-p.D1270N as causing by themselves CF or CBAVD and emphazises the necessity to perform a complete scanning of CFTR genes and to assign the parental alleles when novel missense mutations are identified.


Human Genetics | 1997

Cystic fibrosis in Lebanon: distribution of CFTR mutations among Arab communities

Marie Desgeorges; André Mégarbané; Caroline Guittard; Soukeyna Carles; Jacques Loiselet; Jacques Demaille; Mireille Claustres

Abstract Cystic fibrosis (CF) is thought to be rare among the Arab populations from the Middle East and little data have been reported so far. We have studied a sample of 20 families living in Lebanon for several generations and who have at least one child with CF. These families are mainly from the Maronite, Greek Catholic, Greek Orthodox, Shiite or Sunnite groups. We found a 50% rate of consanguineous marriage, independent of the community of origin. The distribution of CF genotypes was determined through the screening of all exons of the CFTR (cystic fibrosis transmembrane conductance regulator) gene by the technique of denaturing gradient gel electrophoresis combined with asymmetric amplification DNA sequencing. A total of ten different mutations accounting for 87.5% of 32 unrelated CF alleles was identified, including two novel putative mutations (E672del and IVS21-28G→A). Three mutations, ΔF508 (37.5%), W1282X (15.6%), and N1303K (9.4%) accounted for 62.5% of CF alleles. Interestingly, in the Maronite group, 66.7% of the ΔF508 chromosomes were found to be associated with allele 7 of the IVS8(T)tract, contrasting with the absolute linkage disequilibrium between European ΔF508 chromosomes and allele 9. During this study, two previously undescribed polymorphisms (IVS14a + 17del5 and 2691T/C) were also identified.


BMC Medical Genetics | 2007

Large genomic rearrangements in the CFTR gene contribute to CBAVD

Magali Taulan; Anne Girardet; Caroline Guittard; Jean-Pierre Altieri; Carine Templin; Christophe Béroud; Marie des Georges; Mireille Claustres

BackgroundBy performing extensive scanning of whole coding and flanking sequences of the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) gene, we had previously identified point mutations in 167 out of 182 (91.7%) males with isolated congenital bilateral absence of the vas deferens (CBAVD). Conventional PCR-based methods of mutation analysis do not detect gross DNA lesions. In this study, we looked for large rearrangements within the whole CFTR locus in the 32 CBAVD patients with only one or no mutation.MethodsWe developed a semi-quantitative fluorescent PCR assay (SQF-PCR), which relies on the comparison of the fluorescent profiles of multiplex PCR fragments obtained from different DNA samples. We confirmed the gross alterations by junction fragment amplification and identified their breakpoints by direct sequencing.ResultsWe detected two large genomic heterozygous deletions, one encompassing exon 2 (c.54-5811_c.164+2186del8108ins182) [or CFTRdele2], the other removing exons 22 to 24 (c.3964-3890_c.4443+3143del9454ins5) [or CFTRdele 22_24], in two males carrying a typical CBAVD mutation on the other parental CFTR allele. We present the first bioinformatic tool for exon phasing of the CFTR gene, which can help to rename the exons and the nomenclature of small mutations according to international recommendations and to predict the consequence of large rearrangements on the open reading frame.ConclusionIdentification of large rearrangements further expands the CFTR mutational spectrum in CBAVD and should now be systematically investigated. We have designed a simple test to specifically detect the presence or absence of the two rearrangements identified in this study.


Human Mutation | 2010

UMD‐CFTR: A database dedicated to CF and CFTR‐related disorders

Corinne Bareil; C. Thèze; Christophe Béroud; D. Hamroun; Caroline Guittard; Céline René; Damien Paulet; Marie des Georges; Mireille Claustres

With the increasing knowledge of cystic fibrosis (CF) and CFTR‐related diseases (CFTR‐RD), the number of sequence variations in the CFTR gene is constantly raising. CF and particularly CFTR‐RD provide a particular challenge because of many unclassified variants and identical genotypes associated with different phenotypes. Using the Universal Mutation Database (UMD®) software we have constructed UMD‐CFTR (freely available at the URL: http://www.umd.be/CFTR/), the first comprehensive relational CFTR database that allows an in‐depth analysis and annotation of all variations identified in individuals whose CFTR genes have been analyzed extensively. The system has been tested on the molecular data from 757 patients (540 CF and 217 CBAVD) including disease‐causing, unclassified, and nonpathogenic alterations (301 different sequence variations) representing 3,973 entries. Tools are provided to assess the pathogenicity of mutations. UMD‐CFTR also offers a number of query tools and graphical views providing instant access to the list of mutations, their frequencies, positions and predicted consequences, or correlations between genotypes, haplotypes, and phenotypes. UMD‐CFTR offers a way to compile not only disease‐causing genotypes but also haplotypes. It will help the CFTR scientific and medical communities to improve sequence variation interpretation, evaluate the putative influence of haplotypes on mutations, and correlate molecular data with phenotypes. Hum Mutat 31:1011–1019, 2010.


Journal of Medical Genetics | 2001

No evidence of allelic heterogeneity in the DYT1 gene of European patients with early onset torsion dystonia

Sylvie Tuffery-Giraud; Laurent Cavalier; Agathe Roubertie; Caroline Guittard; Soukeyna Carles; Patrick Calvas; Bernard Echenne; Philippe Coubes; Mireille Claustres

Editor—Torsion dystonia is a movement disorder characterised by sustained involuntary muscle contractions, frequently causing twisting and repetitive movements or abnormal postures.1 Primary torsion dystonia (PTD) occurs either in a familial or sporadic pattern with dystonia as the sole phenotypic manifestation with the exception that tremor can be present as well. Early onset, generalised torsion dystonia is the most severe form of hereditary dystonia, and the most prevalent form is the result of mutation in the DYT1 ( TOR1A) gene on chromosome 9q34.2 Inheritance follows an autosomal dominant mode of transmission with reduced penetrance (30-40%),3 and there is a particularly high prevalence in Ashkenazi Jews (AJ) as a result of a founder effect and genetic drift.4 Early onset primary dystonia resulting from DYT1 usually starts in an arm or a leg at a mean age of 12.5 years (this can range, however, from 4 to 44 years).5 More than 60-70% of cases have progression to generalised dystonia involving limb and axial muscles, but the cranial muscles are only involved in 11-18% of cases.6 The causative mutation has been identified as a 3 bp deletion (946delGAG) in the coding sequence of the DYT1 gene, resulting in loss of one of a pair of glutamic acid residues near the C-terminus of the encoded protein, torsinA.7 Presumably, deletion of this amino acid results in a critical change in the function of the gene product that leads to clinical signs of dystonia. Currently, this mutation is the only sequence change found to be associated with the disease state, regardless of ethnic origin, both as an inherited7 or a de novo deletion.8 The ΔGAG in the heterozygous state accounts for 50-60% of non-Jewish (NJ) subjects9-11 and over 90% of AJ subjects5 with early, limb …


European Journal of Human Genetics | 2005

A large-scale study of the random variability of a coding sequence: a study on the CFTR gene

Guido Modiano; Cristina Bombieri; Bianca Maria Ciminelli; Francesca Belpinati; Silvia Giorgi; Marie des Georges; Virginie Scotet; Fiorenza Pompei; Cinzia Ciccacci; Caroline Guittard; Marie Pierre Audrezet; Angela Begnini; Michael Toepfer; Milan Macek; Claude Férec; Mireille Claustres; Pier Franco Pignatti

Coding single nucleotide substitutions (cSNSs) have been studied on hundreds of genes using small samples (ng≈100–150 genes). In the present investigation, a large random European population sample (average ng≈1500) was studied for a single gene, the CFTR (Cystic Fibrosis Transmembrane conductance Regulator). The nonsynonymous (NS) substitutions exhibited, in accordance with previous reports, a mean probability of being polymorphic (q>0.005), much lower than that of the synonymous (S) substitutions, but they showed a similar rate of subpolymorphic (q<0.005) variability. This indicates that, in autosomal genes that may have harmful recessive alleles (nonduplicated genes with important functions), genetic drift overwhelms selection in the subpolymorphic range of variability, making disadvantageous alleles behave as neutral. These results imply that the majority of the subpolymorphic nonsynonymous alleles of these genes are selectively negative or even pathogenic.


Journal of Cystic Fibrosis | 2011

A recurrent deep-intronic splicing CF mutation emphasizes the importance of mRNA studies in clinical practice.

Catherine Costa; Virginie Prulière-Escabasse; Alix de Becdelièvre; Christine Gameiro; Lisa Golmard; Caroline Guittard; Laurence Bassinet; Thierry Bienvenu; Marie des Georges; Ralph Epaud; Eric Bieth; Irina Giurgea; Abdel Aissat; Alexandre Hinzpeter; Bruno Costes; Pascale Fanen; Michel Goossens; Mireille Claustres; André Coste; Emmanuelle Girodon

BACKGROUND The identification by CFTR mRNA studies of a new deep-intronic splicing mutation, c.870-1113_1110delGAAT, in one patient of our series with mild CF symptoms and in three CF patients of an Italian study, led us to evaluate the mutation frequency and phenotype/genotype correlations. METHODS 266 patients with CF and related disorders and having at least one undetected mutation, were tested at the gDNA level in three French reference laboratories. RESULTS In total, the mutation was found in 13 unrelated patients (5% of those already carrying a mutation) plus 4 siblings, including one homozygote and 12 heterozygotes having a severe CF mutation. The sweat test was positive in 10/14 documented cases, the diagnosis was delayed after 20 years in 9/15 and pancreatic insufficiency was present in 5/16. CONCLUSION c.870-1113_1110delGAAT should be considered as CF-causing with phenotype variability and overall delayed diagnosis. Its frequency highlights the potential of mRNA studies.

Collaboration


Dive into the Caroline Guittard's collaboration.

Top Co-Authors

Avatar

Mireille Claustres

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacques Demaille

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Soukeyna Carles

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Thierry Bienvenu

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Mireille Claustres

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge