Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caroline Hansson is active.

Publication


Featured researches published by Caroline Hansson.


Neuroscience | 2011

Ghrelin directly targets the ventral tegmental area to increase food motivation.

Karolina P. Skibicka; Caroline Hansson; Mayte Alvarez-Crespo; Peter Friberg; Suzanne L. Dickson

Ghrelin, a circulating orexigenic stomach-derived hormone, has recently been implicated in extra-homeostatic feeding, increasing food reward and food-motivated behavior. The precise target site(s) for ghrelins effects on food reward have yet to be elucidated. The neurocircuitry underpinning food-motivated behavior involves, in particular, the dopamine cells of the ventral tegmental area (VTA) that project to the nucleus accumbens (NAcc). Ghrelin stimulation in both of these mesolimbic reward areas increases chow intake. Here we sought to determine if ghrelin acts directly within these mesolimbic reward areas to increase food reward/motivation in studies that combine feeding behavior, pharmacology, and neuroanatomy. We found that motivated behavior for a sucrose reward, assessed in an operant conditioning paradigm in rats, was increased when ghrelin was microinjected directly into the VTA but not into the NAcc. By contrast, ghrelin administration to both areas increased the free feeding of chow. Importantly, in a state of overnight food restriction, where endogenous levels of ghrelin are increased, ghrelin receptor (GHS-R1A) blockade in the VTA was sufficient to decrease the motivation to work for a sugar reward. Blockade of the GHS-R1A in VTA or NAcc was not sufficient to reduce fasting-induced chow hyperphagia. Taken together our data identify the VTA but not the NAcc as a direct, necessary, and sufficient target site for ghrelins action on food motivation.


The Journal of Neuroscience | 2012

The Glucagon-Like Peptide 1 (GLP-1) Analogue, Exendin-4, Decreases the Rewarding Value of Food: A New Role for Mesolimbic GLP-1 Receptors

Suzanne L. Dickson; Rozita H. Shirazi; Caroline Hansson; Filip Bergquist; Hans Nissbrandt; Karolina P. Skibicka

The glucagon-like peptide 1 (GLP-1) system is a recently established target for type 2 diabetes treatment. In addition to regulating glucose homeostasis, GLP-1 also reduces food intake. Previous studies demonstrate that the anorexigenic effects of GLP-1 can be mediated through hypothalamic and brainstem circuits which regulate homeostatic feeding. Here, we demonstrate an entirely novel neurobiological mechanism for GLP-1-induced anorexia in rats, involving direct effects of a GLP-1 agonist, Exendin-4 (EX4) on food reward that are exerted at the level of the mesolimbic reward system. We assessed the impact of peripheral, central, and intramesolimbic EX4 on two models of food reward: conditioned place preference (CPP) and progressive ratio operant-conditioning. Food-reward behavior was reduced in the CPP test by EX4, as rats no longer preferred an environment previously paired to chocolate pellets. EX4 also decreased motivated behavior for sucrose in a progressive ratio operant-conditioning paradigm when administered peripherally. We show that this effect is mediated centrally, via GLP-1 receptors (GLP-1Rs). GLP-1Rs are expressed in several key nodes of the mesolimbic reward system; however, their function remains unexplored. Thus we sought to determine the neurobiological substrates underlying the food-reward effect. We found that the EX4-mediated inhibition of food reward could be driven from two key mesolimbic structures—ventral tegmental area and nucleus accumbens—without inducing concurrent malaise or locomotor impairment. The current findings, that activation of central GLP-1Rs strikingly suppresses food reward/motivation by interacting with the mesolimbic system, indicate an entirely novel mechanism by which the GLP-1R stimulation affects feeding-oriented behavior.


Addiction Biology | 2012

Role of ghrelin in food reward: impact of ghrelin on sucrose self-administration and mesolimbic dopamine and acetylcholine receptor gene expression

Karolina P. Skibicka; Caroline Hansson; Emil Egecioglu; Suzanne L. Dickson

The decision to eat is strongly influenced by non‐homeostatic factors such as food palatability. Indeed, the rewarding and motivational value of food can override homeostatic signals, leading to increased consumption and hence, obesity. Ghrelin, a gut‐derived orexigenic hormone, has a prominent role in homeostatic feeding. Recently, however, it has emerged as a potent modulator of the mesolimbic dopaminergic reward pathway, suggesting a role for ghrelin in food reward. Here, we sought to determine whether ghrelin and its receptors are important for reinforcing motivation for natural sugar reward by examining the role of ghrelin receptor (GHS‐R1A) stimulation and blockade for sucrose progressive ratio operant conditioning, a procedure used to measure motivational drive to obtain a reward. Peripherally and centrally administered ghrelin significantly increased operant responding and therefore, incentive motivation for sucrose. Utilizing the GHS‐R1A antagonist JMV2959, we demonstrated that blockade of GHS‐R1A signaling significantly decreased operant responding for sucrose. We further investigated ghrelins effects on key mesolimbic reward nodes, the ventral tegmental area (VTA) and nucleus accumbens (NAcc), by evaluating the effects of chronic central ghrelin treatment on the expression of genes encoding major reward neurotransmitter receptors, namely dopamine and acetylcholine. Ghrelin treatment was associated with an increased dopamine receptor D5 and acetylcholine receptor nAChRβ2 gene expression in the VTA and decreased expression of D1, D3, D5 and nAChRα3 in the NAcc. Our data indicate that ghrelin plays an important role in motivation and reinforcement for sucrose and impacts on the expression of dopamine and acetylcholine encoding genes in the mesolimbic reward circuitry. These findings suggest that ghrelin antagonists have therapeutic potential for the treatment of obesity and to suppress the overconsumption of sweet food.


Reviews in Endocrine & Metabolic Disorders | 2011

Hedonic and incentive signals for body weight control

Emil Egecioglu; Karolina P. Skibicka; Caroline Hansson; Mayte Alvarez-Crespo; P. Anders Friberg; Elisabeth Jerlhag; Jörgen A. Engel; Suzanne L. Dickson

Here we review the emerging neurobiological understanding of the role of the brain’s reward system in the regulation of body weight in health and in disease. Common obesity is characterized by the over-consumption of palatable/rewarding foods, reflecting an imbalance in the relative importance of hedonic versus homeostatic signals. The popular ‘incentive salience theory’ of food reward recognises not only a hedonic/pleasure component (‘liking’) but also an incentive motivation component (‘wanting’ or ‘reward-seeking’). Central to the neurobiology of the reward mechanism is the mesoaccumbal dopamine system that confers incentive motivation not only for natural rewards such as food but also by artificial rewards (eg. addictive drugs). Indeed, this mesoaccumbal dopamine system receives and integrates information about the incentive (rewarding) value of foods with information about metabolic status. Problematic over-eating likely reflects a changing balance in the control exerted by hypothalamic versus reward circuits and/or it could reflect an allostatic shift in the hedonic set point for food reward. Certainly, for obesity to prevail, metabolic satiety signals such as leptin and insulin fail to regain control of appetitive brain networks, including those involved in food reward. On the other hand, metabolic control could reflect increased signalling by the stomach-derived orexigenic hormone, ghrelin. We have shown that ghrelin activates the mesoaccumbal dopamine system and that central ghrelin signalling is required for reward from both chemical drugs (eg alcohol) and also from palatable food. Future therapies for problematic over-eating and obesity may include drugs that interfere with incentive motivation, such as ghrelin antagonists.


Endocrinology | 2012

Ghrelin interacts with neuropeptide Y Y1 and opioid receptors to increase food reward.

Karolina P. Skibicka; Rozita H. Shirazi; Caroline Hansson; Suzanne L. Dickson

Ghrelin, a stomach-derived hormone, is an orexigenic peptide that was recently shown to potently increase food reward behavior. The neurochemical circuitry that links ghrelin to the mesolimbic system and food reward behavior remains unclear. Here we examined the contribution of neuropeptide Y (NPY) and opioids to ghrelins effects on food motivation and intake. Both systems have well-established links to the mesolimbic ventral tegmental area (VTA) and reward/motivation control. NPY mediates the effect of ghrelin on food intake via activation of NPY-Y1 receptor (NPY-Y1R); their connection with respect to motivated behavior is unexplored. The role of opioids in any aspect of ghrelins action on food-oriented behaviors is unknown. Rats were trained in a progressive ratio sucrose-induced operant schedule to measure food reward/motivation behavior. Chow intake was measured immediately after the operant test. In separate experiments, we explored the suppressive effects of a selective NPY-Y1R antagonist or opioid receptor antagonist naltrexone, injected either intracerebroventricularly or intra-VTA, on ghrelin-induced food reward behavior. The ventricular ghrelin-induced increase in sucrose-motivated behavior and chow intake were completely blocked by intracerebroventricular pretreatment with either an NPY-Y1R antagonist or naltrexone. The intra-VTA ghrelin-induced sucrose-motivated behavior was blocked only by intra-VTA naltrexone. In contrast, the intra-VTA ghrelin-stimulated chow intake was attenuated only by intra-VTA NPY-Y1 blockade. Finally, ghrelin infusion was associated with an elevated VTA μ-opioid receptor expression. Thus, we identify central NPY and opioid signaling as the necessary mediators of food intake and reward effects of ghrelin and localize these interactions to the mesolimbic VTA.


Neuroscience | 2011

Central administration of ghrelin alters emotional responses in rats: behavioural, electrophysiological and molecular evidence

Caroline Hansson; David Haage; Magdalena Taube; Emil Egecioglu; Nicolas Salomé; Suzanne L. Dickson

The orexigenic and pro-obesity hormone ghrelin targets key hypothalamic and mesolimbic circuits involved in energy balance, appetite and reward. Given that such circuits are closely integrated with those regulating mood and cognition, we sought to determine whether chronic (>2 weeks) CNS exposure to ghrelin alters anxiety- and depression-like behaviour in rats as well as some physiological correlates. Rats bearing chronically implanted i.c.v. catheters were treated with ghrelin (10 μg/d) or vehicle for 4 weeks. Tests used to assess anxiety- and depression-like behaviour were undertaken during weeks 3-4 of the infusion. These revealed an increase in anxiety- and depression-like behaviour in the ghrelin-treated rats relative to controls. At the end of the 4-week infusion, brains were removed and the amygdala dissected for subsequent qPCR analysis that revealed changes in expression of a number of genes representing key systems implicated in these behavioural changes. Finally, given the key role of the dorsal raphe serotonin system in emotional reactivity, we examined the electrophysiological response of dorsal raphe neurons after a ghrelin challenge, and found mainly inhibitory responses in this region. We demonstrate that the central ghrelin signalling system is involved in emotional reactivity in rats, eliciting pro-anxiety and pro-depression effects and have begun to explore novel target systems for ghrelin that may be of importance for these effects.


Neuroscience | 2010

Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents

Suzanne L. Dickson; Erik Hrabovszky; Caroline Hansson; Elisabeth Jerlhag; Mayte Alvarez-Crespo; Karolina P. Skibicka; Csilla S. Molnár; Zsolt Liposits; Jörgen A. Engel; Emil Egecioglu

Here we sought to determine whether ghrelins central effects on food intake can be interrupted by nicotine acetylcholine receptor (nAChR) blockade. Ghrelin regulates mesolimbic dopamine neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens, partly via cholinergic VTA afferents originating in the laterodorsal tegmental area (LDTg). Given that these cholinergic projections to the VTA have been implicated in natural as well as drug-induced reinforcement, we sought to investigate the role of cholinergic signaling in ghrelin-induced food intake as well as fasting-induced food intake, for which endogenous ghrelin has been implicated. We found that i.p. treatment with the non-selective centrally active nAChR antagonist, mecamylamine decreased fasting-induced food intake in both mice and rats. Moreover, central administration of mecamylamine decreased fasting-induced food intake in rats. I.c.v. ghrelin-induced food intake was suppressed by mecamylamine i.p. but not by hexamethonium i.p., a peripheral nAChR antagonist. Furthermore, mecamylamine i.p. blocked food intake following ghrelin injection into the VTA. Expression of the ghrelin receptor, the growth hormone secretagogue receptor 1A, was found to co-localize with choline acetyltransferase, a marker of cholinergic neurons, in the LDTg. Finally, mecamylamine treatment i.p. decreased the ability of palatable food to condition a place preference. These data suggest that ghrelin-induced food intake is partly mediated via nAChRs and that nicotinic blockade decreases the rewarding properties of food.


Journal of Neuroendocrinology | 2009

On the central mechanism underlying ghrelin's chronic pro-obesity effects in rats: new insights from studies exploiting a potent ghrelin receptor antagonist.

Nicolas Salomé; Caroline Hansson; Magdalena Taube; L Gustafsson-Ericson; Emil Egecioglu; Linda Karlsson-Lindahl; J A Fehrentz; Jean Martinez; Daniel Perrissoud; Suzanne L. Dickson

In the present study, we explore the central nervous system mechanism underlying the chronic central effects of ghrelin with respect to increasing body weight and body fat. Specifically, using a recently developed ghrelin receptor antagonist, GHS‐R1A (JMV2959), we investigate the role of GHS‐R1A in mediating the effects of ghrelin on energy balance and on hypothalamic gene expression. As expected, in adult male rats, chronic central treatment with ghrelin for 14 days, when compared to vehicle‐treated control rats, resulted in an increased body weight, lean mass and fat mass (assessed by dual X‐ray absorptiometry), dissected white fat pad weight, cumulative food intake, food efficiency, respiratory exchange ratio and a decrease of energy expenditure. Co‐administration of the ghrelin receptor antagonist JMV2959 suppressed/blocked the majority of these effects, with the notable exception of ghrelin‐induced food intake and food efficiency. The hypothesis emerging from these data, namely that GHS‐R1A mediates the chronic effects of ghrelin on fat accumulation, at least partly independent of food intake, is discussed in light of the accompanying data regarding the hypothalamic genes coding for peptides and receptors involved in energy balance regulation, which were found to have altered expression in these studies.


Neuropharmacology | 2014

Influence of ghrelin on the central serotonergic signaling system in mice

Caroline Hansson; Mayte Alvarez-Crespo; Magdalena Taube; Karolina P. Skibicka; Linnéa Schmidt; Linda Karlsson-Lindahl; Emil Egecioglu; Hans Nissbrandt; Suzanne L. Dickson

The central ghrelin signaling system engages key pathways of importance for feeding control, recently shown to include those engaged in anxiety-like behavior in rodents. Here we sought to determine whether ghrelin impacts on the central serotonin system, which has an important role in anxiety. We focused on two brain areas, the amygdala (of importance for the mediation of fear and anxiety) and the dorsal raphe (i.e. the site of origin of major afferent serotonin pathways, including those that project to the amygdala). In these brain areas, we measured serotonergic turnover (using HPLC) and the mRNA expression of a number of serotonin-related genes (using real-time PCR). We found that acute central administration of ghrelin to mice increased the serotonergic turnover in the amygdala. It also increased the mRNA expression of a number of serotonin receptors, both in the amygdala and in the dorsal raphe. Studies in ghrelin receptor (GHS-R1A) knock-out mice showed a decreased mRNA expression of serotonergic receptors in both the amygdala and the dorsal raphe, relative to their wild-type littermates. We conclude that the central serotonin system is a target for ghrelin, providing a candidate neurochemical substrate of importance for ghrelins effects on mood.


Neuropsychopharmacology | 2016

The Stomach-Derived Hormone Ghrelin Increases Impulsive Behavior.

Rozita H. Anderberg; Caroline Hansson; Maya Fenander; Jennifer E. Richard; Suzanne L. Dickson; Hans Nissbrandt; Filip Bergquist; Karolina P. Skibicka

Impulsivity, defined as impaired decision making, is associated with many psychiatric and behavioral disorders, such as attention-deficit/hyperactivity disorder as well as eating disorders. Recent data indicate that there is a strong positive correlation between food reward behavior and impulsivity, but the mechanisms behind this relationship remain unknown. Here we hypothesize that ghrelin, an orexigenic hormone produced by the stomach and known to increase food reward behavior, also increases impulsivity. In order to assess the impact of ghrelin on impulsivity, rats were trained in three complementary tests of impulsive behavior and choice: differential reinforcement of low rate (DRL), go/no-go, and delay discounting. Ghrelin injection into the lateral ventricle increased impulsive behavior, as indicated by reduced efficiency of performance in the DRL test, and increased lever pressing during the no-go periods of the go/no-go test. Central ghrelin stimulation also increased impulsive choice, as evidenced by the reduced choice for large rewards when delivered with a delay in the delay discounting test. In order to determine whether signaling at the central ghrelin receptors is necessary for maintenance of normal levels of impulsive behavior, DRL performance was assessed following ghrelin receptor blockade with central infusion of a ghrelin receptor antagonist. Central ghrelin receptor blockade reduced impulsive behavior, as reflected by increased efficiency of performance in the DRL task. To further investigate the neurobiological substrate underlying the impulsivity effect of ghrelin, we microinjected ghrelin into the ventral tegmental area, an area harboring dopaminergic cell bodies. Ghrelin receptor stimulation within the VTA was sufficient to increase impulsive behavior. We further evaluated the impact of ghrelin on dopamine-related gene expression and dopamine turnover in brain areas key in impulsive behavior control. This study provides the first demonstration that the stomach-produced hormone ghrelin increases impulsivity and also indicates that ghrelin can change two major components of impulsivity—motor and choice impulsivity.

Collaboration


Dive into the Caroline Hansson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emil Egecioglu

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge