Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suzanne L. Dickson is active.

Publication


Featured researches published by Suzanne L. Dickson.


Nature Medicine | 2002

Interleukin-6-deficient mice develop mature-onset obesity

Wallenius; Kristina Wallenius; Bo Ahrén; M Rudling; H Carlsten; Suzanne L. Dickson; Claes Ohlsson; John-Olov Jansson

The immune-modulating cytokine interleukin-6 (IL-6) is expressed both in adipose tissue and centrally in hypothalamic nuclei that regulate body composition. We investigated the impact of loss of IL-6 on body composition in mice lacking the gene encoding IL-6 (Il6−/− mice) and found that they developed mature-onset obesity that was partly reversed by IL-6 replacement. The obese Il6−/− mice had disturbed carbohydrate and lipid metabolism, increased leptin levels and decreased responsiveness to leptin treatment. To investigate the possible mechanism and site of action of the anti-obesity effect of IL-6, we injected rats centrally and peripherally with IL-6 at low doses. Intracerebroventricular, but not intraperitoneal IL-6 treatment increased energy expenditure. In conclusion, centrally acting IL-6 exerts anti-obesity effects in rodents.


Journal of Neuroendocrinology | 2001

Systemic administration of ghrelin induces Fos and Egr-1 proteins in the hypothalamic arcuate nucleus of fasted and fed rats.

Adrian K. Hewson; Suzanne L. Dickson

Ghrelin, a recently identified endogenous ligand for the growth hormone secretagogue (GHS) receptor, induces growth hormone (GH) secretion following systemic administration. We sought to determine whether systemic administration of ghrelin activates cells in the hypothalamic arcuate nucleus by examining the distribution of cells expressing Fos and Egr‐1 proteins. In normally fed rats, both ghrelin and GHRP‐6 (a synthetic GHS) significantly increased the number of cells expressing Fos and Egr‐1 in the arcuate nucleus. The effects of ghrelin and GHRP‐6 to induce Fos or Egr‐1 protein expression was significantly greater in fasted than in fed rats. Thus, we show that (i) ghrelin is a centrally active peptide; (ii) it acts in a similar manner to synthetic GHS; and (iii) its central actions are increased in fasting, presumably reflecting physiological changes that accompany altered food intake and/or nutritional state.


Addiction Biology | 2007

Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens.

Elisabet Jerlhag; Emil Egecioglu; Suzanne L. Dickson; Annika Douhan; Lennart Svensson; Jörgen A. Engel

Ghrelin stimulates appetite, increases food intake and causes adiposity by mechanisms that include direct actions on the brain. Previously, we showed that intracerebroventricular administration of ghrelin has stimulatory and dopamine‐enhancing properties. These effects of ghrelin are mediated via central nicotine receptors, suggesting that ghrelin can activate the acetylcholine–dopamine reward link. This reward link consists of cholinergic input from the laterodorsal tegmental area (LDTg) to the mesolimbic dopamine system that originates in the ventral tegmental area (VTA) and projects to the nucleus accumbens. Given that growth hormone secretagogue receptors (GHSR‐1A) are expressed in the VTA and LDTg, brain areas involved in reward, the present series of experiments were undertaken to examine the hypothesis that these regions may mediate the stimulatory and dopamine‐enhancing effects of ghrelin, by means of locomotor activity and in vivo microdialysis in freely moving mice. We found that local administration of ghrelin into the VTA (1 µg in 1 µl) induced an increase in locomotor activity and in the extracellular concentration of accumbal dopamine. In addition, local administration of ghrelin into the LDTg (1 µg in 1 µl) caused a locomotor stimulation and an increase in the extracellular levels of accumbal dopamine. Taken together, this indicates that ghrelin might, via activation of GHSR‐1A in the VTA and LDTg, stimulate the acetylcholine–dopamine reward link, implicating that ghrelin is a part of the neurochemical overlap between the reward systems and those that regulate energy balance.


Addiction Biology | 2006

Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward.

Elisabet Jerlhag; Emil Egecioglu; Suzanne L. Dickson; Malin E. Andersson; Lennart Svensson; Jörgen A. Engel

It is becoming increasingly apparent that there is a degree of neurochemical overlap between the reward systems and those regulating energy balance. We therefore investigated whether ghrelin, a stomach‐derived and centrally derived orexigenic peptide, might act on the reward systems. Central ghrelin administration (1 µg/µL, to the third ventricle) induced an acute increase in locomotor activity as well as dopamine‐overflow in the nucleus accumbens, suggesting that ghrelin can activate the mesoaccumbal dopamine system originating in the ventral tegmental area, a system associated with reward and motivated behaviour. The cholinergic afferents to the ventral tegmental area have been implicated in natural reward and in regulating mesoaccumbal dopamine neurons. The possibility that nicotinic receptors are involved in mediating the stimulatory and dopamine‐enhancing effects of ghrelin is supported by the findings that peripheral injection of the unselective nicotinic antagonist mecamylamine (2.0 mg/kg) blocked these ghrelin‐induced effects. Tentatively, ghrelin may, via activation of the acetylcholine–dopamine reward link, increase the incentive values of signals associated with motivated behaviours of importance for survival such as feeding behaviour. It will be important to discover whether this has therapeutic implications for compulsive addictive behaviours, such as eating behaviour disorders and drug dependence.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Requirement of central ghrelin signaling for alcohol reward.

Elisabet Jerlhag; Emil Egecioglu; Sara Landgren; Nicolas Salomé; Markus Heilig; Diederik Moechars; Rakesh Datta; Daniel Perrissoud; Suzanne L. Dickson; Jörgen A. Engel

The stomach-derived hormone ghrelin interacts with key CNS circuits regulating energy balance and body weight. Here we provide evidence that the central ghrelin signaling system is required for alcohol reward. Central ghrelin administration (to brain ventricles or to tegmental areas involved in reward) increased alcohol intake in a 2-bottle (alcohol/water) free choice limited access paradigm in mice. By contrast, central or peripheral administration of ghrelin receptor (GHS-R1A) antagonists suppressed alcohol intake in this model. Alcohol-induced locomotor stimulation, accumbal dopamine release and conditioned place preference were abolished in models of suppressed central ghrelin signaling: GHS-R1A knockout mice and mice treated with 2 different GHS-R1A antagonists. Thus, central ghrelin signaling, via GHS-R1A, not only stimulates the reward system, but is also required for stimulation of that system by alcohol. Our data suggest that central ghrelin signaling constitutes a potential target for treatment of alcohol-related disorders.


Addiction Biology | 2010

Ghrelin increases intake of rewarding food in rodents.

Emil Egecioglu; Elisabet Jerlhag; Nicolas Salomé; Karolina P. Skibicka; David Haage; Mohammad Bohlooly-Y; Daniel Andersson; Mikael Bjursell; Daniel Perrissoud; Jörgen A. Engel; Suzanne L. Dickson

We investigated whether ghrelin action at the level of the ventral tegmental area (VTA), a key node in the mesolimbic reward system, is important for the rewarding and motivational aspects of the consumption of rewarding/palatable food. Mice with a disrupted gene encoding the ghrelin receptor (GHS‐R1A) and rats treated peripherally with a GHS‐R1A antagonist both show suppressed intake of rewarding food in a free choice (chow/rewarding food) paradigm. Moreover, accumbal dopamine release induced by rewarding food was absent in GHS‐R1A knockout mice. Acute bilateral intra‐VTA administration of ghrelin increased 1‐hour consumption of rewarding food but not standard chow. In comparison with sham rats, VTA‐lesioned rats had normal intracerebroventricular ghrelin‐induced chow intake, although both intake of and time spent exploring rewarding food was decreased. Finally, the ability of rewarding food to condition a place preference was suppressed by the GHS‐R1A antagonist in rats. Our data support the hypothesis that central ghrelin signaling at the level of the VTA is important for the incentive value of rewarding food.


Biochemical and Biophysical Research Communications | 2002

Intracerebroventricular interleukin-6 treatment decreases body fat in rats

Kristina Wallenius; Ville Wallenius; David Sunter; Suzanne L. Dickson; John-Olov Jansson

Recently we found that interleukin-6 (IL-6) knockout mice develop mature-onset obesity and that a single intracerebroventricular (ICV) injection of IL-6 increases energy expenditure. In the present study we investigated if chronic ICV treatment with IL-6 can suppress body fat mass. IL-6 was injected ICV daily for two weeks to rats fed a high-fat diet. IL-6 treatment but not saline treatment decreased body weight by 8.4% and decreased the relative weights of mesenteric and retroperitoneal fat pads. Consistent with this, circulating leptin levels were decreased by 40% after IL-6 treatment but not after saline treatment. Average food intake per day was decreased in the IL-6 treated group compared to the saline treated rats. IL-6 treatment did not change hepatic expression of the acute-phase protein haptoglobin, serum levels of insulin or insulin-like growth factor-I, or the weights of the heart, liver, kidneys, adrenals, and spleen. We conclude that centrally administered IL-6 can decrease body fat in rats without causing acute-phase reaction.


Neuroscience | 2011

Ghrelin directly targets the ventral tegmental area to increase food motivation.

Karolina P. Skibicka; Caroline Hansson; Mayte Alvarez-Crespo; Peter Friberg; Suzanne L. Dickson

Ghrelin, a circulating orexigenic stomach-derived hormone, has recently been implicated in extra-homeostatic feeding, increasing food reward and food-motivated behavior. The precise target site(s) for ghrelins effects on food reward have yet to be elucidated. The neurocircuitry underpinning food-motivated behavior involves, in particular, the dopamine cells of the ventral tegmental area (VTA) that project to the nucleus accumbens (NAcc). Ghrelin stimulation in both of these mesolimbic reward areas increases chow intake. Here we sought to determine if ghrelin acts directly within these mesolimbic reward areas to increase food reward/motivation in studies that combine feeding behavior, pharmacology, and neuroanatomy. We found that motivated behavior for a sucrose reward, assessed in an operant conditioning paradigm in rats, was increased when ghrelin was microinjected directly into the VTA but not into the NAcc. By contrast, ghrelin administration to both areas increased the free feeding of chow. Importantly, in a state of overnight food restriction, where endogenous levels of ghrelin are increased, ghrelin receptor (GHS-R1A) blockade in the VTA was sufficient to decrease the motivation to work for a sugar reward. Blockade of the GHS-R1A in VTA or NAcc was not sufficient to reduce fasting-induced chow hyperphagia. Taken together our data identify the VTA but not the NAcc as a direct, necessary, and sufficient target site for ghrelins action on food motivation.


The Journal of Neuroscience | 2012

The Glucagon-Like Peptide 1 (GLP-1) Analogue, Exendin-4, Decreases the Rewarding Value of Food: A New Role for Mesolimbic GLP-1 Receptors

Suzanne L. Dickson; Rozita H. Shirazi; Caroline Hansson; Filip Bergquist; Hans Nissbrandt; Karolina P. Skibicka

The glucagon-like peptide 1 (GLP-1) system is a recently established target for type 2 diabetes treatment. In addition to regulating glucose homeostasis, GLP-1 also reduces food intake. Previous studies demonstrate that the anorexigenic effects of GLP-1 can be mediated through hypothalamic and brainstem circuits which regulate homeostatic feeding. Here, we demonstrate an entirely novel neurobiological mechanism for GLP-1-induced anorexia in rats, involving direct effects of a GLP-1 agonist, Exendin-4 (EX4) on food reward that are exerted at the level of the mesolimbic reward system. We assessed the impact of peripheral, central, and intramesolimbic EX4 on two models of food reward: conditioned place preference (CPP) and progressive ratio operant-conditioning. Food-reward behavior was reduced in the CPP test by EX4, as rats no longer preferred an environment previously paired to chocolate pellets. EX4 also decreased motivated behavior for sucrose in a progressive ratio operant-conditioning paradigm when administered peripherally. We show that this effect is mediated centrally, via GLP-1 receptors (GLP-1Rs). GLP-1Rs are expressed in several key nodes of the mesolimbic reward system; however, their function remains unexplored. Thus we sought to determine the neurobiological substrates underlying the food-reward effect. We found that the EX4-mediated inhibition of food reward could be driven from two key mesolimbic structures—ventral tegmental area and nucleus accumbens—without inducing concurrent malaise or locomotor impairment. The current findings, that activation of central GLP-1Rs strikingly suppresses food reward/motivation by interacting with the mesolimbic system, indicate an entirely novel mechanism by which the GLP-1R stimulation affects feeding-oriented behavior.


Neuroscience | 1993

Systemic administration of growth hormone-releasing peptide activates hypothalamic arcuate neurons

Suzanne L. Dickson; G. Leng; I.C.A.F. Robinson

The synthetic hexapeptide growth hormone-releasing peptide selectively releases growth hormone in many species including man. Growth hormone-releasing peptide directly stimulates growth hormone release by an action at the level of the pituitary, at a different receptor site to that for the endogenous 44-amino acid peptide, growth hormone-releasing hormone, and when administered with growth hormone-releasing hormone has a synergistic effect. In addition to this pituitary action, we have suggested that the potent in vivo growth hormone-releasing activity of growth hormone-releasing peptide reflects a hypothalamic action and growth hormone-releasing peptide binding sites have been reported to be present in the hypothalamus. We have now found more direct evidence for a hypothalamic action of growth hormone-releasing peptide in two ways. First, we have found that a sub-population of hypothalamic neurons show strongly increased fos expression in response to systemic growth hormone-releasing peptide administration. Fos is the protein product of the immediate early gene, c-fos, which is induced in many neuronal systems following their activation. Second, extracellular recordings from putative growth hormone-releasing hormone neurons in the arcuate nucleus showed that growth hormone-releasing peptide also stimulates the firing of neurons in this area.

Collaboration


Dive into the Suzanne L. Dickson's collaboration.

Top Co-Authors

Avatar

Emil Egecioglu

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heike Vogel

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge