Caroline Obert
St. Jude Children's Research Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Caroline Obert.
Infection and Immunity | 2006
Caroline Obert; Jack Sublett; Deepak Kaushal; Ernesto Hinojosa; Theresa Barton; Elaine Tuomanen; Carlos J. Orihuela
ABSTRACT Streptococcus pneumoniae is a leading cause of community-acquired pneumonia and gram-positive sepsis. While multiple virulence determinants have been identified, the combination of features that determines the propensity of an isolate to cause invasive pneumococcal disease (IPD) remains unknown. In this study, we determined the genetic composition of 42 invasive and 30 noninvasive clinical isolates of serotypes 6A, 6B, and 14 by comparative genomic hybridization. Comparison of the present/absent gene matrix (i.e., comparative genomic analysis [CGA]) identified a candidate core genome consisting of 1,553 genes (73% of the TIGR4 genome), 154 genes whose presence correlated with the ability to cause IPD, and 176 genes whose presence correlated with the noninvasive phenotype. Genes identified by CGA were cross-referenced with the published signature-tagged mutagenesis studies, which served to identify core and IPD-correlated genes required for in vivo passage. Among these, two pathogenicity islands, region of diversity 8a (RD8a), which encodes a neuraminidase and V-type sodium synthase, and RD10, which encodes PsrP, a protein homologous to the platelet adhesin GspB in Streptococcus gordonii, were identified. Mice infected with a PsrP mutant were delayed in the development of bacteremia and demonstrated reduced mortality versus wild-type-infected controls. Finally, the presence of seven RDs was determined to correlate with the noninvasive phenotype, a finding that suggests some RDs may contribute to asymptomatic colonization. In conclusion, RDs are unequally distributed between invasive and noninvasive isolates, RD8a and RD10 are correlated with the propensity of an isolate to cause IPD, and PsrP is required for full virulence in mice.
PLOS Pathogens | 2012
Beth Mann; Tim van Opijnen; Jianmin Wang; Caroline Obert; Yong-Dong Wang; Robert Carter; Daniel J. McGoldrick; Granger Ridout; Andrew Camilli; Elaine Tuomanen; Jason W. Rosch
Small noncoding RNAs (sRNAs) play important roles in gene regulation in both prokaryotes and eukaryotes. Thus far, no sRNA has been assigned a definitive role in virulence in the major human pathogen Streptococcus pneumoniae. Based on the potential coding capacity of intergenic regions, we hypothesized that the pneumococcus produces many sRNAs and that they would play an important role in pathogenesis. We describe the application of whole-genome transcriptional sequencing to systematically identify the sRNAs of Streptococcus pneumoniae. Using this approach, we have identified 89 putative sRNAs, 56 of which are newly identified. Furthermore, using targeted genetic approaches and Tn-seq transposon screening, we demonstrate that many of the identified sRNAs have important global and niche-specific roles in virulence. These data constitute the most comprehensive analysis of pneumococcal sRNAs and provide the first evidence of the extensive roles of sRNAs in pneumococcal pathogenesis.
BMC Genomics | 2011
Phuong Nguyen; Jing Ma; Deqing Pei; Caroline Obert; Cheng Cheng; Terrence L. Geiger
BackgroundRecent advances in massively parallel sequencing have increased the depth at which T cell receptor (TCR) repertoires can be probed by >3log10, allowing for saturation sequencing of immune repertoires. The resolution of this sequencing is dependent on its accuracy, and direct assessments of the errors formed during high throughput repertoire analyses are limited.ResultsWe analyzed 3 monoclonal TCR from TCR transgenic, Rag-/- mice using Illumina® sequencing. A total of 27 sequencing reactions were performed for each TCR using a trifurcating design in which samples were divided into 3 at significant processing junctures. More than 20 million complementarity determining region (CDR) 3 sequences were analyzed. Filtering for lower quality sequences diminished but did not eliminate sequence errors, which occurred within 1-6% of sequences. Erroneous sequences were pre-dominantly of correct length and contained single nucleotide substitutions. Rates of specific substitutions varied dramatically in a position-dependent manner. Four substitutions, all purine-pyrimidine transversions, predominated. Solid phase amplification and sequencing rather than liquid sample amplification and preparation appeared to be the primary sources of error. Analysis of polyclonal repertoires demonstrated the impact of error accumulation on data parameters.ConclusionsCaution is needed in interpreting repertoire data due to potential contamination with mis-sequence reads. However, a high association of errors with phred score, high relatedness of erroneous sequences with the parental sequence, dominance of specific nt substitutions, and skewed ratio of forward to reverse reads among erroneous sequences indicate approaches to filter erroneous sequences from repertoire data sets.
Journal of General Virology | 2010
David A. Boltz; Bounlom Douangngeun; Phouvong Phommachanh; Settha Sinthasak; Ricarda Mondry; Caroline Obert; Patrick Seiler; Rachael Keating; Yasuo Suzuki; Hiroaki Hiramatsu; Elena A. Govorkova; Robert G. Webster
Pandemic influenza viruses can emerge through continuous evolution and the acquisition of specific mutations or through reassortment. This study assessed the pandemic potential of H5N1 viruses isolated from poultry outbreaks occurring from July 2006 to September 2008 in the Lao Peoples Democratic Republic (PDR). We analyzed 29 viruses isolated from chickens and ducks and two from fatal human cases in 2007. Prior to 2008, all H5N1 isolates in Lao PDR were from clade 2.3.4; however, clade 2.3.2 was introduced in September 2008. Of greatest concern was the circulation of three isolates that showed reduced sensitivity to the neuraminidase (NA) inhibitor oseltamivir in an enzyme inhibition assay, each with different NA mutations - V116A, I222L and K150N, and a previously unreported S246N mutation. In addition, six isolates had an S31N mutation in the M2 protein, which conferred resistance to amantadine not previously reported in clade 2.3.4 viruses. Two H5N1 reassortants were isolated whose polymerase genes, PB1 and PB2, were homologous to those of Eurasian viruses giving rise to a novel H5N1 genotype, genotype P. All H5N1 viruses retained avian-like receptor specificity, but four had altered affinities for alpha2,3-linked sialic acid. This study shows that, in a genetically similar population of H5N1 viruses in Lao PDR, mutants emerged with natural resistance to antivirals and altered affinities for alpha2,3-linked sialic acids, together with reassortants with polymerase genes homologous to Eurasian viruses. These changes may contribute to the emergence of a pandemic influenza strain and are critical in devising surveillance strategies.
Journal of Bacteriology | 2005
Wolfgang Haas; Deepak Kaushal; Jack Sublett; Caroline Obert; Elaine Tuomanen
The vancomycin stress response was studied in Streptococcus pneumoniae strains T4 (TIGR4) and Tupelo. Vancomycin affected the expression of 175 genes, including genes encoding transport functions and enzymes involved in aminosugar metabolism. The two-component systems TCS03, TCS11, and CiaRH also responded to antibiotic treatment. We hypothesize that the three regulons are an important part of the bacteriums response to vancomycin stress.
Virology | 2009
Uzma B. Aamir; K. Naeem; Zaheer Ahmed; Caroline Obert; John Franks; Scott Krauss; Patrick Seiler; Robert G. Webster
H5 and H7 avian influenza viruses can become highly pathogenic in chickens after interspecies transmission. These viruses have transmitted directly to humans from birds in Eurasia and Africa (H5N1), the Netherlands (H7N7), and Canada (H7N3). Here we report antigenic, sequence, and phylogenetic analyses of H7N3 viruses isolated from chickens in Pakistan from 1995 to 2002. We compared the pathogenic and zoonotic potential of the Pakistani viruses in avian and mammalian hosts. In chickens, all of the isolates showed high pathogenicity with poor transmissibility to contact birds. Viral shedding from the trachea and cloaca was equivalent, but cloacal shedding occurred longer; dissemination of virus into the tissues was widespread. In contrast, the viruses replicated poorly in 6-week-old mallard ducks. In mammalian hosts, of the two Pakistani H7N3/02 viruses that caused weight loss, one also caused 40% mortality in mice without prior adaptation, and preliminary experiments in ferrets showed significant virus multiplication in the lungs, intestine, and conjunctiva. We conclude that the H7N3/02 isolates from Pakistan show limited antigenic drift and have evolved slowly during their 8-year circulation in chickens; however, these viruses have the potential to infect mammals.
Cell Host & Microbe | 2014
Robert Carter; Joshua Wolf; Tim van Opijnen; Martha Muller; Caroline Obert; Corinna Burnham; Beth Mann; Yimei Li; Randall T. Hayden; Tamara I. Pestina; Derek A. Persons; Andrew Camilli; Patricia M. Flynn; Elaine Tuomanen; Jason W. Rosch
Sickle cell disease (SCD) patients are at high risk of contracting pneumococcal infection. To address this risk, they receive pneumococcal vaccines, and antibiotic prophylaxis and treatment. To assess the impact of SCD and these interventions on pneumococcal genetic architecture, we examined the genomes of more than 300 pneumococcal isolates from SCD patients over 20 years. Modern SCD strains retained invasive capacity but shifted away from the serotypes used in vaccines. These strains had specific genetic changes related to antibiotic resistance, capsule biosynthesis, metabolism, and metal transport. A murine SCD model coupled with Tn-seq mutagenesis identified 60 noncapsular pneumococcal genes under differential selective pressure in SCD, which correlated with aspects of SCD pathophysiology. Further, virulence determinants in the SCD context were distinct from the general population, and protective capacity of potential antigens was lost over time in SCD. This highlights the importance of understanding bacterial pathogenesis in the context of high-risk individuals.
Infection and Immunity | 2010
Thomas E. Kehl-Fie; Eric A. Porsch; Pablo Yagupsky; Elizabeth Grass; Caroline Obert; Daniel K. Benjamin; Joseph W. St. Geme
ABSTRACT Kingella kingae is a gram-negative bacterium that is being recognized increasingly as a cause of septic arthritis and osteomyelitis in young children. Previous work established that K. kingae expresses type IV pili that mediate adherence to respiratory epithelial and synovial cells. PilA1 is the major pilus subunit in K. kingae type IV pili and is essential for pilus assembly. To develop a better understanding of the role of K. kingae type IV pili during colonization and invasive disease, we examined a collection of clinical isolates for pilus expression and in vitro adherence. In addition, in a subset of isolates we performed nucleotide sequencing to assess the level of conservation of PilA1. The majority of respiratory and nonendocarditis blood isolates were piliated, while the majority of joint fluid, bone, and endocarditis blood isolates were nonpiliated. The piliated isolates formed either spreading/corroding or nonspreading/noncorroding colonies and were uniformly adherent, while the nonpiliated isolates formed domed colonies and were nonadherent. PilA1 sequence varied significantly from strain to strain, resulting in substantial variability in antibody reactivity. These results suggest that type IV pili may confer a selective advantage on K. kingae early in infection and a selective disadvantage on K. kingae at later stages in the pathogenic process. We speculate that PilA1 is immunogenic during natural infection and undergoes antigenic variation to escape the immune response.
The Journal of Infectious Diseases | 2011
Isao Miyairi; Jonathan D. Laxton; Xiao Fei Wang; Caroline Obert; Venkat R. R. Arva Tatireddigari; Nico van Rooijen; Thomas P. Hatch; Gerald I. Byrne
BACKGROUND Psittacosis is a zoonosis caused by Chlamydia psittaci and is characterized by severe pneumonia and systemic infection. We sought to determine the basis of the 1000-fold difference in lethal dose of 2 C. psittaci 6BC strains in mice. METHODS Genomes of the strains were sequenced. Mice were infected intraperitoneally and the growth kinetics, immune responses, and pathology were compared. RESULTS The 2 strains differed by the presence of a 7.5-kb plasmid in the attenuated strain and 7 nonsynonomous single-nucleotide polymorphisms between the chromosomes, including a serine/threonine protein kinase gene pkn5. The plasmid was cured from the attenuated strain, but it remained nonlethal. Strains did not differ in growth kinetics in vitro or in vivo. Infection with the attenuated strain led to influx of activated macrophages with relatively minor organ damage. In contrast, the virulent strain caused an influx of nonactivated macrophages, neutrophils, and significant end organ damage. Mice infected with the virulent strain survived challenge when coinfected with either the plasmid-positive or plasmid-negative attenuated strain, indicating that an active process elicited by the attenuated strain reduces inflammation and disease. CONCLUSIONS C. psittaci modulates virulence by alteration of host immunity, which is conferred by small differences in the chromosome.
Emerging Infectious Diseases | 2005
Martha L. Miller; Caroline Obert; Geli Gao; Najat C. Daw; Patricia M. Flynn; Elaine Tuomanen
Increasingly resistant bacteria in sickle cell disease patients indicate need to evaluate extendedspectrum cephalosporin therapy.