Caroline Stetler
Mayo Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Caroline Stetler.
Science | 2015
Jeannie Chew; Tania F. Gendron; Mercedes Prudencio; Hiroki Sasaguri; Yong Jie Zhang; Monica Castanedes-Casey; Chris W. Lee; Karen Jansen-West; Aishe Kurti; Melissa E. Murray; Kevin F. Bieniek; Peter O. Bauer; Ena C. Whitelaw; Linda Rousseau; Jeannette N. Stankowski; Caroline Stetler; Lillian M. Daughrity; Emilie A. Perkerson; Pamela Desaro; Amelia Johnston; Karen Overstreet; Dieter Edbauer; Rosa Rademakers; Kevin B. Boylan; Dennis W. Dickson; John D. Fryer; Leonard Petrucelli
A mouse model for ALS A G4C2 repeat expansion in C9ORF72 is known to be the major genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis (c9FTD/ALS). However, a lack of animal models recapitulating key disease features has hindered efforts to understand and prevent c9FTD/ALS-related neurodegeneration. Until now. Chew et al. describe a mouse model that mimics both neuropathological and clinical phenotypes of c9FTD/ALS. Science, this issue p. 1151 A mouse model mimics the pathological and behavioral abnormalities seen in certain amyotrophic lateral sclerosis or frontotemporal dementia patients. The major genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis is a G4C2 repeat expansion in C9ORF72. Efforts to combat neurodegeneration associated with “c9FTD/ALS” are hindered by a lack of animal models recapitulating disease features. We developed a mouse model to mimic both neuropathological and clinical c9FTD/ALS phenotypes. We expressed (G4C2)66 throughout the murine central nervous system by means of somatic brain transgenesis mediated by adeno-associated virus. Brains of 6-month-old mice contained nuclear RNA foci, inclusions of poly(Gly-Pro), poly(Gly-Ala), and poly(Gly-Arg) dipeptide repeat proteins, as well as TDP-43 pathology. These mouse brains also exhibited cortical neuron and cerebellar Purkinje cell loss, astrogliosis, and decreased weight. (G4C2)66 mice also developed behavioral abnormalities similar to clinical symptoms of c9FTD/ALS patients, including hyperactivity, anxiety, antisocial behavior, and motor deficits.
Acta Neuropathologica | 2013
Veronique V. Belzil; Peter O. Bauer; Mercedes Prudencio; Tania F. Gendron; Caroline Stetler; Irene K. Yan; Luc Pregent; Lillian M. Daughrity; Matt Baker; Rosa Rademakers; Kevin B. Boylan; Tushar Patel; Dennis W. Dickson; Leonard Petrucelli
Individuals carrying (GGGGCC) expanded repeats in the C9orf72 gene represent a significant portion of patients suffering from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Elucidating how these expanded repeats cause “c9FTD/ALS” has since become an important goal of the field. Toward this end, we sought to investigate whether epigenetic changes are responsible for the decrease in C9orf72 expression levels observed in c9FTD/ALS patients. We obtained brain tissue from ten c9FTD/ALS individuals, nine FTD/ALS cases without a C9orf72 repeat expansion, and nine disease control participants, and generated fibroblastoid cell lines from seven C9orf72 expanded repeat carriers and seven participants carrying normal alleles. Chromatin immunoprecipitation using antibodies for histone H3 and H4 trimethylated at lysines 9 (H3K9), 27 (H3K27), 79 (H3K79), and 20 (H4K20) revealed that these trimethylated residues bind strongly to C9orf72 expanded repeats in brain tissue, but not to non-pathogenic repeats. Our finding that C9orf72 mRNA levels are reduced in the frontal cortices and cerebella of c9FTD/ALS patients is consistent with trimethylation of these histone residues, an event known to repress gene expression. Moreover, treating repeat carrier-derived fibroblasts with 5-aza-2-deoxycytidine, a DNA and histone demethylating agent, not only decreased C9orf72 binding to trimethylated histone residues, but also increased C9orf72 mRNA expression. Our results provide compelling evidence that trimethylation of lysine residues within histones H3 and H4 is a novel mechanism involved in reducing C9orf72 mRNA expression in expanded repeat carriers. Of importance, we show that mutant C9orf72 binding to trimethylated H3K9 and H3K27 is detectable in blood of c9FTD/ALS patients. Confirming these exciting results using blood from a larger cohort of patients may establish this novel epigenetic event as a biomarker for c9FTD/ALS.
Nature Neuroscience | 2015
Mercedes Prudencio; Veronique V. Belzil; Ranjan Batra; Christian A. Ross; Tania F. Gendron; Luc Pregent; Melissa E. Murray; Karen Overstreet; Amelia E Piazza-Johnston; Pamela Desaro; Kevin F. Bieniek; Michael DeTure; Wing C. Lee; Sherri M. Biendarra; Mary D. Davis; Matt Baker; Ralph B. Perkerson; Marka van Blitterswijk; Caroline Stetler; Rosa Rademakers; Christopher D. Link; Dennis W. Dickson; Kevin B. Boylan; Hu Li; Leonard Petrucelli
Increasing evidence suggests that defective RNA processing contributes to the development of amyotrophic lateral sclerosis (ALS). This may be especially true for ALS caused by a repeat expansion in C9orf72 (c9ALS), in which the accumulation of RNA foci and dipeptide-repeat proteins are expected to modify RNA metabolism. We report extensive alternative splicing (AS) and alternative polyadenylation (APA) defects in the cerebellum of c9ALS subjects (8,224 AS and 1,437 APA), including changes in ALS-associated genes (for example, ATXN2 and FUS), and in subjects with sporadic ALS (sALS; 2,229 AS and 716 APA). Furthermore, heterogeneous nuclear ribonucleoprotein H (hnRNPH) and other RNA-binding proteins are predicted to be potential regulators of cassette exon AS events in both c9ALS and sALS. Co-expression and gene-association network analyses of gene expression and AS data revealed divergent pathways associated with c9ALS and sALS.
Human Molecular Genetics | 2014
Casey Cook; Yari Carlomagno; Tania F. Gendron; Judy Dunmore; Kristyn Scheffel; Caroline Stetler; Mary Lynne Davis; Dennis W. Dickson; Matthew B. Jarpe; Michael DeTure; Leonard Petrucelli
The accumulation of hyperphosphorylated tau in neurofibrillary tangles (NFTs) is a neuropathological hallmark of tauopathies, including Alzheimers disease (AD) and chronic traumatic encephalopathy, but effective therapies directly targeting the tau protein are currently lacking. Herein, we describe a novel mechanism in which the acetylation of tau on KXGS motifs inhibits phosphorylation on this same motif, and also prevents tau aggregation. Using a site-specific antibody to detect acetylation of KXGS motifs, we demonstrate that these sites are hypoacetylated in patients with AD, as well as a mouse model of tauopathy, suggesting that loss of acetylation on KXGS motifs renders tau vulnerable to pathogenic insults. Furthermore, we identify histone deacetylase 6 (HDAC6) as the enzyme responsible for the deacetylation of these residues, and provide proof of concept that acute treatment with a selective and blood–brain barrier-permeable HDAC6 inhibitor enhances acetylation and decreases phosphorylation on taus KXGS motifs in vivo. As such, we have uncovered a novel therapeutic pathway that can be manipulated to block the formation of pathogenic tau species in disease.
Molecular Neurodegeneration | 2011
Ya Fei Xu; Yong Jie Zhang; Wen Lang Lin; Xiangkun Cao; Caroline Stetler; Dennis W. Dickson; Jada Lewis; Leonard Petrucelli
BackgroundAbnormal distribution, modification and aggregation of transactivation response DNA-binding protein 43 (TDP-43) are the hallmarks of multiple neurodegenerative diseases, especially frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Researchers have identified 44 mutations in the TARDBP gene that encode TDP-43 as causative for cases of sporadic and familial ALS http://www.molgen.ua.ac.be/FTDMutations/. Certain mutant forms of TDP-43, such as M337V, are associated with increased low molecular weight (LMW) fragments compared to wild-type (WT) TDP-43 and cause neuronal apoptosis and developmental delay in chick embryos. Such findings support a direct link between altered TDP-43 function and neurodegeneration.ResultsTo explore the pathogenic properties of the M337V mutation, we generated and characterized two mouse lines expressing human TDP-43 (hTDP-43M337V) carrying this mutation. hTDP-43M337V was expressed primarily in the nuclei of neurons in the brain and spinal cord, and intranuclear and cytoplasmic phosphorylated TDP-43 aggregates were frequently detected. The levels of TDP-43 LMW products of ~25 kDa and ~35 kDa species were also increased in the transgenic mice. Moreover, overexpression of hTDP-43M337V dramatically down regulated the levels of mouse TDP-43 (mTDP-43) protein and RNA, indicating TDP-43 levels are tightly controlled in mammalian systems. TDP-43M337V mice displayed reactive gliosis, widespread ubiquitination, chromatolysis, gait abnormalities, and early lethality. Abnormal cytoplasmic mitochondrial aggregates and abnormal phosphorylated tau were also detected in the mice.ConclusionOur novel TDP-43M337V mouse model indicates that overexpression of hTDP-43M337V alone is toxic in vivo. Because overexpression of hTDP-43 in wild-type TDP-43 and TDP-43M337V mouse models produces similar phenotypes, the mechanisms causing pathogenesis in the mutant model remain unknown. However, our results suggest that overexpression of the hTDP-43M337V can cause neuronal dysfunction due to its effect on a number of cell organelles and proteins, such as mitochondria and TDP-43, that are critical for neuronal activity. The mutant model will serve as a valuable tool in the development of future studies designed to uncover pathways associated with TDP-43 neurotoxicity and the precise roles TDP-43 RNA targets play in neurodegeneration.
Cold Spring Harbor Perspectives in Medicine | 2012
Casey Cook; Caroline Stetler; Leonard Petrucelli
Parkinsons disease (PD), like a number of neurodegenerative diseases associated with aging, is characterized by the abnormal accumulation of protein in a specific subset of neurons. Although researchers have recently elucidated the genetic causes of PD, much remains unknown about what causes increased protein deposition in the disease. Given that increased protein aggregation may result not only from an increase in production, but also from decreased protein clearance, it is imperative to investigate both possibilities as potential PD culprits. This article provides a review of the systems that regulate protein clearance, including the ubiquitin proteasome system (UPS) and the autophagy-lysosomal pathway. Literature implicating failure of these mechanisms-such as UPS dysfunction resulting from environmental toxins and mutations in α-synuclein and parkin, as well as macroautophagic pathway failure because of oxidative stress and aging-in the pathogenesis of PD is also discussed.
Molecular Neurodegeneration | 2012
Jennifer Gass; Wing C. Lee; Casey Cook; NiCole Finch; Caroline Stetler; Karen Jansen-West; Jada Lewis; Christopher D. Link; Rosa Rademakers; Anders Nykjaer; Leonard Petrucelli
BackgroundProgranulin (PGRN), a widely secreted growth factor, is involved in multiple biological functions, and mutations located within the PGRN gene (GRN) are a major cause of frontotemporal lobar degeneration with TDP-43-positive inclusions (FLTD-TDP). In light of recent reports suggesting PGRN functions as a protective neurotrophic factor and that sortilin (SORT1) is a neuronal receptor for PGRN, we used a Sort1-deficient (Sort1−/−) murine primary hippocampal neuron model to investigate whether PGRN’s neurotrophic effects are dependent on SORT1. We sought to elucidate this relationship to determine what role SORT1, as a regulator of PGRN levels, plays in modulating PGRN’s neurotrophic effects.ResultsAs the first group to evaluate the effect of PGRN loss in Grn knockout primary neuronal cultures, we show neurite outgrowth and branching are significantly decreased in Grn−/− neurons compared to wild-type (WT) neurons. More importantly, we also demonstrate that PGRN overexpression can rescue this phenotype. However, the recovery in outgrowth is not observed following treatment with recombinant PGRN harboring missense mutations p.C139R, p.P248L or p.R432C, indicating that these mutations adversely affect the neurotrophic properties of PGRN. In addition, we also present evidence that cleavage of full-length PGRN into granulin peptides is required for increased neuronal outgrowth, suggesting that the neurotrophic functions of PGRN are contained within certain granulins. To further characterize the mechanism by which PGRN impacts neuronal morphology, we assessed the involvement of SORT1. We demonstrate that PGRN induced-outgrowth occurs in the absence of SORT1 in Sort1−/− cultures.ConclusionWe demonstrate that loss of PGRN impairs proper neurite outgrowth and branching, and that exogenous PGRN alleviates this impairment. Furthermore, we determined that exogenous PGRN induces outgrowth independent of SORT1, suggesting another receptor(s) is involved in PGRN induced neuronal outgrowth.
Human Molecular Genetics | 2013
Yong Jie Zhang; Thomas R. Caulfield; Yafei Xu; Tania F. Gendron; Jaime Hubbard; Caroline Stetler; Hiroki Sasaguri; Ena C. Whitelaw; Shuyi Cai; Wing C. Lee; Leonard Petrucelli
TAR DNA-binding protein-43 (TDP-43) is the principal component of ubiquitinated inclusions in amyotrophic lateral sclerosis (ALS) and the most common pathological subtype of frontotemporal dementia—frontotemporal lobar degeneration with TDP-43-positive inclusions (FTLD-TDP). To date, the C-terminus of TDP-43, which is aggregation-prone and contains almost all ALS-associated mutations, has garnered much attention while the functions of the N-terminus of TDP-43 remain largely unknown. To bridge this gap in our knowledge, we utilized novel cell culture and computer-assisted models to evaluate which region(s) of TDP-43 regulate its folding, self-interaction, biological activity and aggregation. We determined that the extreme N-terminus of TDP-43, specifically the first 10 residues, regulates folding of TDP-43 monomers necessary for proper homodimerization and TDP-43-regulated splicing. Despite such beneficial functions, we discovered an interesting dichotomy: full-length TDP-43 aggregation, which is believed to be a pathogenic process, also requires the extreme N-terminus of TDP-43. As such, we provide new insight into the structural basis for TDP-43 function and aggregation, and we suggest that stabilization of TDP-43 homodimers, the physiologically active form of TDP-43, may be a promising therapeutic strategy for ALS and FTLD-TDP.
Alzheimer's Research & Therapy | 2014
Casey Cook; Jeannette N. Stankowski; Yari Carlomagno; Caroline Stetler; Leonard Petrucelli
The identification of tau protein as a major constituent of neurofibrillary tangles spurred considerable effort devoted to identifying and validating pathways through which therapeutics may alleviate tau burden in Alzheimer’s disease and related tauopathies, including chronic traumatic encephalopathy associated with sport- and military-related injuries. Most tau-based therapeutic strategies have previously focused on modulating tau phosphorylation, given that tau species present within neurofibrillary tangles are hyperphosphorylated on a number of different residues. However, the recent discovery that tau is modified by acetylation necessitates additional research to provide greater mechanistic insight into the spectrum of physiological consequences of tau acetylation, which may hold promise as a novel therapeutic target. In this review, we discuss recent findings evaluating tau acetylation in the context of previously accepted notions regarding tau biology and pathophysiology. We also examine the evidence demonstrating the neuroprotective and beneficial consequences of inhibiting histone deacetylase (HDAC)6, a tau deacetylase, including its effect on microtubule stabilization. We also discuss the rationale for pharmacologically modulating HDAC6 in tau-based pathologies as a novel therapeutic strategy.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Mercedes Prudencio; Karen Jansen-West; Wing C. Lee; Tania F. Gendron; Yong Jie Zhang; Ya Fei Xu; Jennifer Gass; Cristiana Stuani; Caroline Stetler; Rosa Rademakers; Dennis W. Dickson; Emanuele Buratti; Leonard Petrucelli
Sortilin 1 regulates the levels of brain progranulin (PGRN), a neurotrophic growth factor that, when deficient, is linked to cases of frontotemporal lobar degeneration with TAR DNA-binding protein-43 (TDP-43)–positive inclusions (FTLD-TDP). We identified a specific splicing enhancer element that regulates the inclusion of a sortilin exon cassette (termed Ex17b) not normally present in the mature sortilin mRNA. This enhancer element is consistently present in sortilin RNA of mice and other species but absent in primates, which carry a premature stop codon within the Ex17b sequence. In the absence of TDP-43, which acts as a regulatory inhibitor, Ex17b is included in the sortilin mRNA. In humans, in contrast to mice, the inclusion of Ex17b in sortilin mRNA generates a truncated, nonfunctional, extracellularly released protein that binds to but does not internalize PGRN, essentially acting as a decoy receptor. Based on these results, we propose a potential mechanism linking misregulation of sortilin splicing with altered PGRN metabolism.