Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen Jansen-West is active.

Publication


Featured researches published by Karen Jansen-West.


Nature | 2008

Substrate-targeting γ-secretase modulators

Thomas Kukar; Thomas B. Ladd; Maralyssa Bann; Patrick C. Fraering; Rajeshwar Narlawar; Ghulam M. Maharvi; Brent Healy; Robert Chapman; Alfred T. Welzel; Robert W. Price; Brenda D. Moore; Vijayaraghavan Rangachari; Bernadette Cusack; Jason L. Eriksen; Karen Jansen-West; Christophe Verbeeck; Debra Yager; Christopher B. Eckman; Wenjuan Ye; Sarah A. Sagi; Barbara A. Cottrell; Justin W. Torpey; Terrone L. Rosenberry; Abdul H. Fauq; Michael S. Wolfe; Boris Schmidt; Dominic M. Walsh; Edward H. Koo; Todd E. Golde

Selective lowering of Aβ42 levels (the 42-residue isoform of the amyloid-β peptide) with small-molecule γ-secretase modulators (GSMs), such as some non-steroidal anti-inflammatory drugs, is a promising therapeutic approach for Alzheimer’s disease. To identify the target of these agents we developed biotinylated photoactivatable GSMs. GSM photoprobes did not label the core proteins of the γ-secretase complex, but instead labelled the β-amyloid precursor protein (APP), APP carboxy-terminal fragments and amyloid-β peptide in human neuroglioma H4 cells. Substrate labelling was competed by other GSMs, and labelling of an APP γ-secretase substrate was more efficient than a Notch substrate. GSM interaction was localized to residues 28–36 of amyloid-β, a region critical for aggregation. We also demonstrate that compounds known to interact with this region of amyloid-β act as GSMs, and some GSMs alter the production of cell-derived amyloid-β oligomers. Furthermore, mutation of the GSM binding site in the APP alters the sensitivity of the substrate to GSMs. These findings indicate that substrate targeting by GSMs mechanistically links two therapeutic actions: alteration in Aβ42 production and inhibition of amyloid-β aggregation, which may synergistically reduce amyloid-β deposition in Alzheimer’s disease. These data also demonstrate the existence and feasibility of ‘substrate targeting’ by small-molecule effectors of proteolytic enzymes, which if generally applicable may significantly broaden the current notion of ‘druggable’ targets.


Acta Neuropathologica | 2013

Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS

Tania F. Gendron; Kevin F. Bieniek; Yong Jie Zhang; Karen Jansen-West; Peter E.A. Ash; Thomas R. Caulfield; Lillian M. Daughrity; Judith Dunmore; Monica Castanedes-Casey; Jeannie Chew; Danielle M. Cosio; Marka van Blitterswijk; Wing C. Lee; Rosa Rademakers; Kevin B. Boylan; Dennis W. Dickson; Leonard Petrucelli

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological overlap. A hexanucleotide (GGGGCC) repeat expansion in a non-coding region of C9ORF72 is the major genetic cause of both diseases. The mechanisms by which this repeat expansion causes “c9FTD/ALS” are not definitively known, but RNA-mediated toxicity is a likely culprit. RNA transcripts of the expanded GGGGCC repeat form nuclear foci in c9FTD/ALS, and also undergo repeat-associated non-ATG (RAN) translation resulting in the production of three aggregation-prone proteins. The goal of this study was to examine whether antisense transcripts resulting from bidirectional transcription of the expanded repeat behave in a similar manner. We show that ectopic expression of (CCCCGG)66 in cultured cells results in foci formation. Using novel polyclonal antibodies for the detection of possible (CCCCGG)exp RAN proteins [poly(PR), poly(GP) and poly(PA)], we validated that (CCCCGG)66 is also subject to RAN translation in transfected cells. Of importance, foci composed of antisense transcripts are observed in the frontal cortex, spinal cord and cerebellum of c9FTD/ALS cases, and neuronal inclusions of poly(PR), poly(GP) and poly(PA) are present in various brain tissues in c9FTD/ALS, but not in other neurodegenerative diseases, including CAG repeat disorders. Of note, RNA foci and poly(GP) inclusions infrequently co-occur in the same cell, suggesting these events represent two distinct ways in which the C9ORF72 repeat expansion may evoke neurotoxic effects. These findings provide mechanistic insight into the pathogenesis of c9FTD/ALS, and have significant implications for therapeutic strategies.


The FASEB Journal | 2010

Massive gliosis induced by interleukin-6 suppresses Aβ deposition in vivo: evidence against inflammation as a driving force for amyloid deposition

Paramita Chakrabarty; Karen Jansen-West; Amanda Beccard; Carolina Ceballos-Diaz; Yona Levites; Christophe Verbeeck; Abba C. Zubair; Dennis W. Dickson; Todd E. Golde; Pritam Das

Proinflammatory stimuli, after amyloid β (Aβ) deposition, have been hypothesized to create a self‐reinforcing positive feedback loop that increases amyloidogenic processing of the Aβ precursor protein (APP), promoting further Aβ accumulation and neuroinflammation in Alzheimers disease (AD). Interleukin‐6 (IL‐6), a proinflammatory cytokine, has been shown to be increased in AD patients implying a pathological interaction. To assess the effects of IL‐6 on Aβ deposition and APP processing in vivo,we overexpressed murine IL‐6 (mIL‐6) in the brains of APP transgenic TgCRND8 and TG2576 mice. mIL‐6 expression resulted in extensive gliosis and concurrently attenuated Aβ deposition in TgCRND8 mouse brains. This was accompanied by up‐regulation of glial phagocytic markers in vivo and resulted in enhanced microglia‐mediated phagocytosis of Aβ aggregates in vitro. Further, mIL‐6‐induced neuroinflammation had no effect on APP processing in TgCRND8 and had no effect on APP processing or steady‐state levels of Aβ in young Tg2576 mice. These results indicate that mIL‐6‐mediated reactive gliosis may be beneficial early in the disease process by potentially enhancing Aβ plaque clearance rather than mediating a neurotoxic feedback loop that exacerbates amyloid pathology. This is the first study that methodically dissects the contribution of mIL‐6 with regard to its potential role in modulating Aβ deposition in vivo.—Chakrabarty, P., Jansen‐West, K., Beccard, A., Ceballos‐Diaz, C., Levites, Y., Verbeeck, C., Zubair, A. C., Dickson, D., Golde, T. E., Das, P. Massive gliosis induced by interleukin‐6 suppresses Aβ deposition in vivo: evidence against inflammation as a driving force for amyloid deposition. FASEB J. 24, 548–559 (2010). www.fasebj.org


Science | 2015

C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits

Jeannie Chew; Tania F. Gendron; Mercedes Prudencio; Hiroki Sasaguri; Yong Jie Zhang; Monica Castanedes-Casey; Chris W. Lee; Karen Jansen-West; Aishe Kurti; Melissa E. Murray; Kevin F. Bieniek; Peter O. Bauer; Ena C. Whitelaw; Linda Rousseau; Jeannette N. Stankowski; Caroline Stetler; Lillian M. Daughrity; Emilie A. Perkerson; Pamela Desaro; Amelia Johnston; Karen Overstreet; Dieter Edbauer; Rosa Rademakers; Kevin B. Boylan; Dennis W. Dickson; John D. Fryer; Leonard Petrucelli

A mouse model for ALS A G4C2 repeat expansion in C9ORF72 is known to be the major genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis (c9FTD/ALS). However, a lack of animal models recapitulating key disease features has hindered efforts to understand and prevent c9FTD/ALS-related neurodegeneration. Until now. Chew et al. describe a mouse model that mimics both neuropathological and clinical phenotypes of c9FTD/ALS. Science, this issue p. 1151 A mouse model mimics the pathological and behavioral abnormalities seen in certain amyotrophic lateral sclerosis or frontotemporal dementia patients. The major genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis is a G4C2 repeat expansion in C9ORF72. Efforts to combat neurodegeneration associated with “c9FTD/ALS” are hindered by a lack of animal models recapitulating disease features. We developed a mouse model to mimic both neuropathological and clinical c9FTD/ALS phenotypes. We expressed (G4C2)66 throughout the murine central nervous system by means of somatic brain transgenesis mediated by adeno-associated virus. Brains of 6-month-old mice contained nuclear RNA foci, inclusions of poly(Gly-Pro), poly(Gly-Ala), and poly(Gly-Arg) dipeptide repeat proteins, as well as TDP-43 pathology. These mouse brains also exhibited cortical neuron and cerebellar Purkinje cell loss, astrogliosis, and decreased weight. (G4C2)66 mice also developed behavioral abnormalities similar to clinical symptoms of c9FTD/ALS patients, including hyperactivity, anxiety, antisocial behavior, and motor deficits.


Acta Neuropathologica | 2014

Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress

Yong Jie Zhang; Karen Jansen-West; Ya Fei Xu; Tania F. Gendron; Kevin F. Bieniek; Wen Lang Lin; Hiroki Sasaguri; Thomas R. Caulfield; Jaime Hubbard; Lillian M. Daughrity; Jeannie Chew; Veronique V. Belzil; Mercedes Prudencio; Jeannette N. Stankowski; Monica Castanedes-Casey; Ena C. Whitelaw; Peter E.A. Ash; Michael DeTure; Rosa Rademakers; Kevin B. Boylan; Dennis W. Dickson; Leonard Petrucelli

The occurrence of repeat-associated non-ATG (RAN) translation, an atypical form of translation of expanded repeats that results in the synthesis of homopolymeric expansion proteins, is becoming more widely appreciated among microsatellite expansion disorders. Such disorders include amyotrophic lateral sclerosis and frontotemporal dementia caused by a hexanucleotide repeat expansion in the C9ORF72 gene (c9FTD/ALS). We and others have recently shown that this bidirectionally transcribed repeat is RAN translated, and the “c9RAN proteins” thusly produced form neuronal inclusions throughout the central nervous system of c9FTD/ALS patients. Nonetheless, the potential contribution of c9RAN proteins to disease pathogenesis remains poorly understood. In the present study, we demonstrate that poly(GA) c9RAN proteins are neurotoxic and may be implicated in the neurodegenerative processes of c9FTD/ALS. Specifically, we show that expression of poly(GA) proteins in cultured cells and primary neurons leads to the formation of soluble and insoluble high molecular weight species, as well as inclusions composed of filaments similar to those observed in c9FTD/ALS brain tissues. The expression of poly(GA) proteins is accompanied by caspase-3 activation, impaired neurite outgrowth, inhibition of proteasome activity, and evidence of endoplasmic reticulum (ER) stress. Of importance, ER stress inhibitors, salubrinal and TUDCA, provide protection against poly(GA)-induced toxicity. Taken together, our data provide compelling evidence towards establishing RAN translation as a pathogenic mechanism of c9FTD/ALS, and suggest that targeting the ER using small molecules may be a promising therapeutic approach for these devastating diseases.


Molecular Neurodegeneration | 2012

Progranulin regulates neuronal outgrowth independent of Sortilin

Jennifer Gass; Wing C. Lee; Casey Cook; NiCole Finch; Caroline Stetler; Karen Jansen-West; Jada Lewis; Christopher D. Link; Rosa Rademakers; Anders Nykjaer; Leonard Petrucelli

BackgroundProgranulin (PGRN), a widely secreted growth factor, is involved in multiple biological functions, and mutations located within the PGRN gene (GRN) are a major cause of frontotemporal lobar degeneration with TDP-43-positive inclusions (FLTD-TDP). In light of recent reports suggesting PGRN functions as a protective neurotrophic factor and that sortilin (SORT1) is a neuronal receptor for PGRN, we used a Sort1-deficient (Sort1−/−) murine primary hippocampal neuron model to investigate whether PGRN’s neurotrophic effects are dependent on SORT1. We sought to elucidate this relationship to determine what role SORT1, as a regulator of PGRN levels, plays in modulating PGRN’s neurotrophic effects.ResultsAs the first group to evaluate the effect of PGRN loss in Grn knockout primary neuronal cultures, we show neurite outgrowth and branching are significantly decreased in Grn−/− neurons compared to wild-type (WT) neurons. More importantly, we also demonstrate that PGRN overexpression can rescue this phenotype. However, the recovery in outgrowth is not observed following treatment with recombinant PGRN harboring missense mutations p.C139R, p.P248L or p.R432C, indicating that these mutations adversely affect the neurotrophic properties of PGRN. In addition, we also present evidence that cleavage of full-length PGRN into granulin peptides is required for increased neuronal outgrowth, suggesting that the neurotrophic functions of PGRN are contained within certain granulins. To further characterize the mechanism by which PGRN impacts neuronal morphology, we assessed the involvement of SORT1. We demonstrate that PGRN induced-outgrowth occurs in the absence of SORT1 in Sort1−/− cultures.ConclusionWe demonstrate that loss of PGRN impairs proper neurite outgrowth and branching, and that exogenous PGRN alleviates this impairment. Furthermore, we determined that exogenous PGRN induces outgrowth independent of SORT1, suggesting another receptor(s) is involved in PGRN induced neuronal outgrowth.


Nature Neuroscience | 2016

C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins.

Yong Jie Zhang; Tania F. Gendron; Jonathan C. Grima; Hiroki Sasaguri; Karen Jansen-West; Ya Fei Xu; Rebecca B. Katzman; Jennifer Gass; Melissa E. Murray; Mitsuru Shinohara; Wen Lang Lin; Aliesha Garrett; Jeannette N. Stankowski; Lillian M. Daughrity; Jimei Tong; Emilie A. Perkerson; Mei Yue; Jeannie Chew; Monica Castanedes-Casey; Aishe Kurti; Zizhao S. Wang; Amanda M. Liesinger; Jeremy D. Baker; Jie Jiang; Clotilde Lagier-Tourenne; Dieter Edbauer; Don W. Cleveland; Rosa Rademakers; Kevin B. Boylan; Guojun Bu

Neuronal inclusions of poly(GA), a protein unconventionally translated from G4C2 repeat expansions in C9ORF72, are abundant in patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) caused by this mutation. To investigate poly(GA) toxicity, we generated mice that exhibit poly(GA) pathology, neurodegeneration and behavioral abnormalities reminiscent of FTD and ALS. These phenotypes occurred in the absence of TDP-43 pathology and required poly(GA) aggregation. HR23 proteins involved in proteasomal degradation and proteins involved in nucleocytoplasmic transport were sequestered by poly(GA) in these mice. HR23A and HR23B similarly colocalized to poly(GA) inclusions in C9ORF72 expansion carriers. Sequestration was accompanied by an accumulation of ubiquitinated proteins and decreased xeroderma pigmentosum C (XPC) levels in mice, indicative of HR23A and HR23B dysfunction. Restoring HR23B levels attenuated poly(GA) aggregation and rescued poly(GA)-induced toxicity in neuronal cultures. These data demonstrate that sequestration and impairment of nuclear HR23 and nucleocytoplasmic transport proteins is an outcome of, and a contributor to, poly(GA) pathology.


The Journal of Neuroscience | 2010

Phosphorylation Dynamics Regulate Hsp27-Mediated Rescue of Neuronal Plasticity Deficits in Tau Transgenic Mice

Jose F. Abisambra; Laura J. Blair; Shannon E. Hill; Jeffrey R. Jones; Clara Kraft; Justin T. Rogers; John Koren; Umesh K. Jinwal; Lisa Y. Lawson; Amelia G. Johnson; Donna M. Wilcock; John C. O'Leary; Karen Jansen-West; Martin Muschol; Todd E. Golde; Edwin J. Weeber; Jessica L. Banko; Chad A. Dickey

Molecular chaperones regulate the aggregation of a number of proteins that pathologically misfold and accumulate in neurodegenerative diseases. Identifying ways to manipulate these proteins in disease models is an area of intense investigation; however, the translation of these results to the mammalian brain has progressed more slowly. In this study, we investigated the ability of one of these chaperones, heat shock protein 27 (Hsp27), to modulate tau dynamics. Recombinant wild-type Hsp27 and a genetically altered version of Hsp27 that is perpetually pseudo-phosphorylated (3×S/D) were generated. Both Hsp27 variants interacted with tau, and atomic force microscopy and dynamic light scattering showed that both variants also prevented tau filament formation. However, extrinsic genetic delivery of these two Hsp27 variants to tau transgenic mice using adeno-associated viral particles showed that wild-type Hsp27 reduced neuronal tau levels, whereas 3×S/D Hsp27 was associated with increased tau levels. Moreover, rapid decay in hippocampal long-term potentiation (LTP) intrinsic to this tau transgenic model was rescued by wild-type Hsp27 overexpression but not by 3×S/D Hsp27. Because the 3×S/D Hsp27 mutant cannot cycle between phosphorylated and dephosphorylated states, we can conclude that Hsp27 must be functionally dynamic to facilitate tau clearance from the brain and rescue LTP; however, when this property is compromised, Hsp27 may actually facilitate accumulation of soluble tau intermediates.


Cell Reports | 2016

Interaction of tau with the RNA-Binding Protein TIA1 Regulates tau Pathophysiology and Toxicity

Tara Vanderweyde; Daniel J. Apicco; Katherine Youmans-Kidder; Peter E.A. Ash; Casey Cook; Edroaldo Lummertz da Rocha; Karen Jansen-West; Alissa A. Frame; Allison Citro; John D. Leszyk; Pavel Ivanov; Jose F. Abisambra; Martin Steffen; Hu Li; Leonard Petrucelli; Benjamin Wolozin

Dendritic mislocalization of microtubule associated protein tau is a hallmark of tauopathies, but the role of dendritic tau is unknown. We now report that tau interacts with the RNA-binding protein (RBP) TIA1 in brain tissue, and we present the brain-protein interactome network for TIA1. Analysis of the TIA1 interactome in brain tissue from wild-type (WT) and tau knockout mice demonstrates that tau is required for normal interactions of TIA1 with proteins linked to RNA metabolism, including ribosomal proteins and RBPs. Expression studies show that tau regulates the distribution of TIA1, and tau accelerates stress granule (SG) formation. Conversely, TIA1 knockdown or knockout inhibits tau misfolding and associated toxicity in cultured hippocampal neurons, while overexpressing TIA1 induces tau misfolding and stimulates neurodegeneration. Pharmacological interventions that prevent SG formation also inhibit tau pathophysiology. These studies suggest that the pathophysiology of tauopathy requires an intimate interaction with RNA-binding proteins.


Nature Neuroscience | 2011

Interferon-γ induces progressive nigrostriatal degeneration and basal ganglia calcification

Paramita Chakrabarty; Carolina Ceballos-Diaz; Wen Lang Lin; Amanda Beccard; Karen Jansen-West; Nikolaus R. McFarland; Christopher Janus; Dennis W. Dickson; Pritam Das; Todd E. Golde

We found that CNS-directed expression of interferon-γ (IFN-γ) resulted in basal ganglia calcification, reminiscent of human idiopathic basal ganglia calcification (IBGC), and nigrostriatal degeneration. Our results indicate that IFN-γ mediates age-progressive nigrostriatal degeneration in the absence of exogenous stressors. Further study of this model may provide insight into selective nigrostriatal degeneration in human IBGC and other Parkinson syndromes.

Collaboration


Dive into the Karen Jansen-West's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Todd E. Golde

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge