Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolyn M. Eng is active.

Publication


Featured researches published by Carolyn M. Eng.


Clinical Orthopaedics and Related Research | 2009

Are Current Measurements of Lower Extremity Muscle Architecture Accurate

Samuel R. Ward; Carolyn M. Eng; Laura H. Smallwood; Richard L. Lieber

Skeletal muscle architecture is defined as the arrangement of fibers in a muscle and functionally defines performance capacity. Architectural values are used to model muscle-joint behavior and to make surgical decisions. The two most extensively used human lower extremity data sets consist of five total specimens of unknown size, gender, and age. Therefore, it is critically important to generate a high-fidelity human lower extremity muscle architecture data set. We disassembled 27 muscles from 21 human lower extremities to characterize muscle fiber length and physiologic cross-sectional area, which define the excursion and force-generating capacities of a muscle. Based on their architectural features, the soleus, gluteus medius, and vastus lateralis are the strongest muscles, whereas the sartorius, gracilis, and semitendinosus have the largest excursion. The plantarflexors, knee extensors, and hip adductors are the strongest muscle groups acting at each joint, whereas the hip adductors and hip extensors have the largest excursion. Contrary to previous assertions, two-joint muscles do not necessarily have longer fibers than single-joint muscles as seen by the similarity of knee flexor and extensor fiber lengths. These high-resolution data will facilitate the development of more accurate musculoskeletal models and challenge existing theories of muscle design; we believe they will aid in surgical decision making.


Journal of Bone and Joint Surgery, American Volume | 2009

Architectural Analysis and Intraoperative Measurements Demonstrate the Unique Design of the Multifidus Muscle for Lumbar Spine Stability

Samuel R. Ward; Choll W. Kim; Carolyn M. Eng; Lionel Gottschalk; Akihito Tomiya; Steven R. Garfin; Richard L. Lieber

BACKGROUND Muscular instability is an important risk factor for lumbar spine injury and chronic low-back pain. Although the lumbar multifidus muscle is considered an important paraspinal muscle, its design features are not completely understood. The purpose of the present study was to determine the architectural properties, in vivo sarcomere length operating range, and passive mechanical properties of the human multifidus muscle. We hypothesized that its architecture would be characterized by short fibers and a large physiological cross-sectional area and that it would operate over a relatively wide range of sarcomere lengths but would have very stiff passive material properties. METHODS The lumbar spines of eight cadaver specimens were excised en bloc from T12 to the sacrum. Multifidus muscles were isolated from each vertebral level, permitting the architectural measurements of mass, sarcomere length, normalized fiber length, physiological cross-sectional area, and fiber length-to-muscle length ratio. To determine the sarcomere length operating range of the muscle, sarcomere lengths were measured from intraoperative biopsy specimens that were obtained with the spine in the flexed and extended positions. The material properties of single muscle fibers were obtained from passive stress-strain tests of excised biopsy specimens. RESULTS The average muscle mass (and standard error) was 146 +/- 8.7 g, and the average sarcomere length was 2.27 +/- 0.06 microm, yielding an average normalized fiber length of 5.66 +/- 0.65 cm, an average physiological cross-sectional area of 23.9 +/- 3.0 cm(2), and an average fiber length-to-muscle length ratio of 0.21 +/- 0.03. Intraoperative sarcomere length measurements revealed that the muscle operates from 1.98 +/- 0.15 microm in extension to 2.70 +/- 0.11 microm in flexion. Passive mechanical data suggested that the material properties of the muscle are comparable with those of muscles of the arm or leg. CONCLUSIONS The architectural design (a high cross-sectional area and a low fiber length-to-muscle length ratio) demonstrates that the multifidus muscle is uniquely designed as a stabilizer to produce large forces. Furthermore, multifidus sarcomeres are positioned on the ascending portion of the length-tension curve, allowing the muscle to become stronger as the spine assumes a forward-leaning posture.


The Journal of Experimental Biology | 2008

Scaling of muscle architecture and fiber types in the rat hindlimb.

Carolyn M. Eng; Laura H. Smallwood; Maria Pia Rainiero; Michele Lahey; Samuel R. Ward; Richard L. Lieber

SUMMARY The functional capacity of a muscle is determined by its architecture and metabolic properties. Although extensive analyses of muscle architecture and fiber type have been completed in a large number of muscles in numerous species, there have been few studies that have looked at the interrelationship of these functional parameters among muscles of a single species. Nor have the architectural properties of individual muscles been compared across species to understand scaling. This study examined muscle architecture and fiber type in the rat (Rattus norvegicus) hindlimb to examine each muscles functional specialization. Discriminant analysis demonstrated that architectural properties are a greater predictor of muscle function (as defined by primary joint action and anti-gravity or non anti-gravity role) than fiber type. Architectural properties were not strictly aligned with fiber type, but when muscles were grouped according to anti-gravity versus non-anti-gravity function there was evidence of functional specialization. Specifically, anti-gravity muscles had a larger percentage of slow fiber type and increased muscle physiological cross-sectional area. Incongruities between a muscles architecture and fiber type may reflect the variability of functional requirements on single muscles, especially those that cross multiple joints. Additionally, discriminant analysis and scaling of architectural variables in the hindlimb across several mammalian species was used to explore whether any functional patterns could be elucidated within single muscles or across muscle groups. Several muscles deviated from previously described muscle architecture scaling rules and there was large variability within functional groups in how muscles should be scaled with body size. This implies that functional demands placed on muscles across species should be examined on the single muscle level.


American Journal of Physical Anthropology | 2009

The functional correlates of jaw‐muscle fiber architecture in tree‐gouging and nongouging callitrichid monkeys

Andrea B. Taylor; Carolyn M. Eng; Fred Anapol; Christopher J. Vinyard

Common (Callithrix jacchus) and pygmy (Cebuella pygmaea) marmosets and cotton-top tamarins (Saguinus oedipus) share broadly similar diets of fruits, insects, and tree exudates. Marmosets, however, differ from tamarins in actively gouging trees with their anterior dentition to elicit tree exudates flow. Tree gouging in common marmosets involves the generation of relatively wide jaw gapes, but not necessarily relatively large bite forces. We compared fiber architecture of the masseter and temporalis muscles in C. jacchus (N = 18), C. pygmaea (N = 5), and S. oedipus (N = 13). We tested the hypothesis that tree-gouging marmosets would exhibit relatively longer fibers and other architectural variables that facilitate muscle stretch. As an architectural trade-off between maximizing muscle excursion/contraction velocity and muscle force, we also tested the hypothesis that marmosets would exhibit relatively less pinnate fibers, smaller physiologic cross-sectional areas (PCSA), and lower priority indices (I) for force. As predicted, marmosets display relatively longer-fibered muscles, a higher ratio of fiber length to muscle mass, and a relatively greater potential excursion of the distal tendon attachments, all of which favor muscle stretch. Marmosets further display relatively smaller PCSAs and other features that reflect a reduced capacity for force generation. The longer fibers and attendant higher contraction velocities likely facilitate the production of relatively wide jaw gapes and the capacity to generate more power from their jaw muscles during gouging. The observed functional trade-off between muscle excursion/contraction velocity and muscle force suggests that primate jaw-muscle architecture reflects evolutionary changes related to jaw movements as one of a number of functional demands imposed on the masticatory apparatus.


American Journal of Physical Anthropology | 2013

Bite force and occlusal stress production in hominin evolution

Carolyn M. Eng; Daniel E. Lieberman; Katherine D. Zink; Michael A. Peters

Maximum bite force affects craniofacial morphology and an organisms ability to break down foods with different material properties. Humans are generally believed to produce low bite forces and spend less time chewing compared with other apes because advances in mechanical and thermal food processing techniques alter food material properties in such a way as to reduce overall masticatory effort. However, when hominins began regularly consuming mechanically processed or cooked diets is not known. Here, we apply a model for estimating maximum bite forces and stresses at the second molar in modern human, nonhuman primate, and hominin skulls that incorporates skeletal data along with species-specific estimates of jaw muscle architecture. The model, which reliably estimates bite forces, shows a significant relationship between second molar bite force and second molar area across species but does not confirm our hypothesis of isometry. Specimens in the genus Homo fall below the regression line describing the relationship between bite force and molar area for nonhuman anthropoids and australopiths. These results suggest that Homo species generate maximum bite forces below those predicted based on scaling among australopiths and nonhuman primates. Because this decline occurred before evidence for cooking, we hypothesize that selection for lower bite force production was likely made possible by an increased reliance on nonthermal food processing. However, given substantial variability among in vivo bite force magnitudes measured in humans, environmental effects, especially variations in food mechanical properties, may also be a factor. The results also suggest that australopiths had ape-like bite force capabilities.


Journal of Orthopaedic & Sports Physical Therapy | 2010

Plasticity of Muscle Architecture After Supraspinatus Tears

Samuel R. Ward; Joseph J. Sarver; Carolyn M. Eng; Alan Kwan; Carola C. Würgler-Hauri; Stephanie M. Perry; Gerald R. Williams; Louis J. Soslowsky; Richard L. Lieber

STUDY DESIGN Controlled laboratory study. OBJECTIVES To measure the architectural properties of rat supraspinatus muscle after a complete detachment of its distal tendon. METHODS Supraspinatus muscles were released from the left humerus of 29 Sprague-Dawley rats (mass, 400-450 g), and the animals were returned to cage activity for 2 weeks (n=12), 4 weeks (n=9), or 9 weeks (n=8), before euthanasia. Measurements of muscle mass, pennation angle, fiber bundle length (sarcomere number), and sarcomere length permitted calculation of normalized fiber length, serial sarcomere number, and physiological cross-sectional area. RESULTS Coronal oblique sections of the supraspinatus confirmed surgical transection of the supraspinatus muscle at 2 weeks, with reattachment by 4 weeks. Muscle mass and length were significantly lower in released muscles at 2 weeks, 4 weeks, and 9 weeks. Sarcomere lengths in released muscles were significantly shorter at 2 weeks but not different by 4 weeks. Sarcomere number was significantly reduced at 2 and 4 weeks, but returned to control values by 9 weeks. The opposing effects of smaller mass and shorter fibers produced significantly smaller physiological cross-sectional area at 2 weeks, but physiological cross-sectional area returned to control levels by 4 weeks. CONCLUSIONS Release of the supraspinatus muscle produced early radial and longitudinal atrophy of the muscle. The functional implications of these adaptations would be most profound at early time points (particularly relevant for rehabilitation), when the muscle remains smaller in cross-sectional area and, due to reduced sarcomere number, would be forced to operate over a wider range of the length-tension curve and at higher velocities, all adaptations resulting in compromised force-generating capacity. These data are relevant to physical therapy because they provide tissue-level insights into impaired muscle and shoulder function following rotator cuff injury.


The Journal of Experimental Biology | 2009

The morphology of the masticatory apparatus facilitates muscle force production at wide jaw gapes in tree-gouging common marmosets ( Callithrix jacchus )

Carolyn M. Eng; Samuel R. Ward; C. J. Vinyard; A. B. Taylor

SUMMARY Common marmosets (Callithrix jacchus) generate wide jaw gapes when gouging trees with their anterior teeth to elicit tree exudate flow. Closely related cotton-top tamarins (Saguinus oedipus) do not gouge trees but share similar diets including exudates. Maximizing jaw opening theoretically compromises the bite forces that marmosets can generate during gouging. To investigate how jaw-muscle architecture and craniofacial position impact muscle performance during gouging, we combine skull and jaw-muscle architectural features to model muscle force production across a range of jaw gapes in these two species. We incorporate joint mechanics, resting sarcomere length and muscle architecture estimates from the masseter and temporalis to model muscle excursion, sarcomere length and relative tension as a function of joint angle. Muscle excursion from occlusion to an estimated maximum functional gape of 55 deg. was smaller in all regions of the masseter and temporalis of C. jacchus compared with S. oedipus except the posterior temporalis. As a consequence of reduced muscle excursion distributed over more sarcomeres in series (i.e. longer fibers), sarcomere length operating ranges are smaller in C. jacchus jaw muscles across this range of gapes. This configuration allows C. jacchus to act on a more favorable portion of the length—tension curve at larger gapes and thereby generate relatively greater tension in these muscles compared with S. oedipus. Our results suggest that biting performance during tree gouging in common marmosets is improved by a musculoskeletal configuration that reduces muscle stretch at wide gapes while simultaneously facilitating comparatively large muscle forces at the extremes of jaw opening.


The Journal of Experimental Biology | 2014

Comparison of rotator cuff muscle architecture between humans and other selected vertebrate species.

Margie A. Mathewson; Alan Kwan; Carolyn M. Eng; Richard L. Lieber; Samuel R. Ward

In this study, we compare rotator cuff muscle architecture of typically used animal models with that of humans and quantify the scaling relationships of these muscles across mammals. The four muscles that correspond to the human rotator cuff – supraspinatus, infraspinatus, subscapularis and teres minor – of 10 commonly studied animals were excised and subjected to a series of comparative measurements. When body mass among animals was regressed against physiological cross-sectional area, muscle mass and normalized fiber length, the confidence intervals suggested geometric scaling but did not exclude other scaling relationships. Based on the architectural difference index (ADI), a combined measure of fiber length-to-moment arm ratio, fiber length-to-muscle length ratio and the fraction of the total rotator cuff physiological cross-sectional area contributed by each muscle, chimpanzees were found to be the most similar to humans (ADI=2.15), followed closely by capuchins (ADI=2.16). Interestingly, of the eight non-primates studied, smaller mammals such as mice, rats and dogs were more similar to humans in architectural parameters compared with larger mammals such as sheep, pigs or cows. The force production versus velocity trade-off (indicated by fiber length-to-moment arm ratio) and the excursion ability (indicated by fiber length-to-muscle length ratio) of humans were also most similar to those of primates, followed by the small mammals. Overall, primates provide the best architectural representation of human muscle architecture. However, based on the muscle architectural parameters of non-primates, smaller rather than larger mammals may be better models for studying muscles related to the human rotator cuff.


Annals of Biomedical Engineering | 2014

Directional Differences in the Biaxial Material Properties of Fascia Lata and the Implications for Fascia Function

Carolyn M. Eng; Francesco Q. Pancheri; Daniel E. Lieberman; Andrew A. Biewener; Luis Dorfmann

Fascia is a highly organized collagenous tissue that is ubiquitous in the body, but whose function is not well understood. Because fascia has a sheet-like structure attaching to muscles and bones at multiple sites, it is exposed to different states of multi- or biaxial strain. In order to measure how biaxial strain affects fascia material behavior, planar biaxial tests with strain control were performed on longitudinal and transversely oriented samples of goat fascia lata (FL). Cruciform samples were cycled to multiple strain levels while the perpendicular direction was held at a constant strain. Structural differences among FL layers were examined using histology and SEM. Results show that FL stiffness, hysteresis, and strain energy density are greater in the longitudinal vs. transverse direction. Increased stiffness in the longitudinal layer is likely due to its greater thickness and greater average fibril diameter compared to the transverse layer(s). Perpendicular strain did not affect FL material behavior. Differential loading in the longitudinal vs. transverse directions may lead to structural changes, enhancing the ability of the longitudinal FL to transmit force, store energy, or stabilize the limb during locomotion. The relative compliance of the transverse fibers may allow expansion of underlying muscles when they contract.


Journal of The Mechanical Behavior of Biomedical Materials | 2014

A constitutive description of the anisotropic response of the fascia lata.

Francesco Q. Pancheri; Carolyn M. Eng; Daniel E. Lieberman; Andrew A. Biewener; Luis Dorfmann

In this paper we propose a constitutive model to analyze in-plane extension of goat fascia lata. We first perform a histological analysis of the fascia that shows a well-organized bi-layered arrangement of undulated collagen fascicles oriented along two well defined directions. To develop a model consistent with the tissue structure we identify the absolute and relative thickness of each layer and the orientation of the preferred directions. New data are presented showing the mechanical response in uniaxial and planar biaxial extension. The paper proposes a constitutive relation to describe the mechanical response. We provide a summary of the main ingredients of the nonlinear theory of elasticity and introduce a suitable strain-energy function to describe the anisotropic response of the fascia. We validate the model by showing good fit of the numerical results and the experimental data. Comments are included about differences and analogies between goat fascia lata and the human iliotibial band.

Collaboration


Dive into the Carolyn M. Eng's collaboration.

Top Co-Authors

Avatar

Samuel R. Ward

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Choll W. Kim

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge