Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel E. Lieberman is active.

Publication


Featured researches published by Daniel E. Lieberman.


Nature | 2004

Endurance running and the evolution of Homo

Dennis M. Bramble; Daniel E. Lieberman

Striding bipedalism is a key derived behaviour of hominids that possibly originated soon after the divergence of the chimpanzee and human lineages. Although bipedal gaits include walking and running, running is generally considered to have played no major role in human evolution because humans, like apes, are poor sprinters compared to most quadrupeds. Here we assess how well humans perform at sustained long-distance running, and review the physiological and anatomical bases of endurance running capabilities in humans and other mammals. Judged by several criteria, humans perform remarkably well at endurance running, thanks to a diverse array of features, many of which leave traces in the skeleton. The fossil evidence of these features suggests that endurance running is a derived capability of the genus Homo, originating about 2 million years ago, and may have been instrumental in the evolution of the human body form.


Nature | 2010

Foot strike patterns and collision forces in habitually barefoot versus shod runners

Daniel E. Lieberman; Madhusudhan Venkadesan; William Werbel; Adam I. Daoud; Susan D’Andrea; Irene S. Davis; Robert Ojiambo Mang’Eni; Yannis Pitsiladis

Humans have engaged in endurance running for millions of years, but the modern running shoe was not invented until the 1970s. For most of human evolutionary history, runners were either barefoot or wore minimal footwear such as sandals or moccasins with smaller heels and little cushioning relative to modern running shoes. We wondered how runners coped with the impact caused by the foot colliding with the ground before the invention of the modern shoe. Here we show that habitually barefoot endurance runners often land on the fore-foot (fore-foot strike) before bringing down the heel, but they sometimes land with a flat foot (mid-foot strike) or, less often, on the heel (rear-foot strike). In contrast, habitually shod runners mostly rear-foot strike, facilitated by the elevated and cushioned heel of the modern running shoe. Kinematic and kinetic analyses show that even on hard surfaces, barefoot runners who fore-foot strike generate smaller collision forces than shod rear-foot strikers. This difference results primarily from a more plantarflexed foot at landing and more ankle compliance during impact, decreasing the effective mass of the body that collides with the ground. Fore-foot- and mid-foot-strike gaits were probably more common when humans ran barefoot or in minimal shoes, and may protect the feet and lower limbs from some of the impact-related injuries now experienced by a high percentage of runners.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The evolution and development of cranial form in Homo sapiens

Daniel E. Lieberman; Brandeis M. McBratney; Ge Krovitz

Despite much data, there is no unanimity over how to define Homo sapiens in the fossil record. Here, we examine cranial variation among Pleistocene and recent human fossils by using a model of cranial growth to identify unique derived features (autapomorphies) that reliably distinguish fossils attributed to “anatomically modern” H. sapiens (AMHS) from those attributed to various taxa of “archaic” Homo spp. (AH) and to test hypotheses about the changes in cranial development that underlie the origin of modern human cranial form. In terms of pattern, AMHS crania are uniquely characterized by two general structural autapomorphies: facial retraction and neurocranial globularity. Morphometric analysis of the ontogeny of these autapomorphies indicates that the developmental changes that led to modern human cranial form derive from a combination of shifts in cranial base angle, cranial fossae length and width, and facial length. These morphological changes, some of which may have occurred because of relative size increases in the temporal and possibly the frontal lobes, occur early in ontogeny, and their effects on facial retraction and neurocranial globularity discriminate AMHS from AH crania. The existence of these autapomorphies supports the hypothesis that AMHS is a distinct species from taxa of “archaic” Homo (e.g., Homo neanderthalensis).


Medicine and Science in Sports and Exercise | 2012

Foot Strike and Injury Rates in Endurance Runners: A Retrospective Study.

Adam I. Daoud; Gary J. Geissler; Frank Wang; Jason Saretsky; Yahya A. Daoud; Daniel E. Lieberman

PURPOSE This retrospective study tests if runners who habitually forefoot strike have different rates of injury than runners who habitually rearfoot strike. METHODS We measured the strike characteristics of middle- and long-distance runners from a collegiate cross-country team and quantified their history of injury, including the incidence and rate of specific injuries, the severity of each injury, and the rate of mild, moderate, and severe injuries per mile run. RESULTS Of the 52 runners studied, 36 (69%) primarily used a rearfoot strike and 16 (31%) primarily used a forefoot strike. Approximately 74% of runners experienced a moderate or severe injury each year, but those who habitually rearfoot strike had approximately twice the rate of repetitive stress injuries than individuals who habitually forefoot strike. Traumatic injury rates were not significantly different between the two groups. A generalized linear model showed that strike type, sex, race distance, and average miles per week each correlate significantly (P < 0.01) with repetitive injury rates. CONCLUSIONS Competitive cross-country runners on a college team incur high injury rates, but runners who habitually rearfoot strike have significantly higher rates of repetitive stress injury than those who mostly forefoot strike. This study does not test the causal bases for this general difference. One hypothesis, which requires further research, is that the absence of a marked impact peak in the ground reaction force during a forefoot strike compared with a rearfoot strike may contribute to lower rates of injuries in habitual forefoot strikers.


Nature | 2005

Virtual cranial reconstruction of Sahelanthropus tchadensis

Christoph P. E. Zollikofer; Marcia S. Ponce de León; Daniel E. Lieberman; Franck Guy; David Pilbeam; Andossa Likius; Hassane Taisso Mackaye; Patrick Vignaud; Michel Brunet

Previous research in Chad at the Toros-Menalla 266 fossiliferous locality (about 7 million years old) uncovered a nearly complete cranium (TM 266-01-60-1), three mandibular fragments and several isolated teeth attributed to Sahelanthropus tchadensis . Of this material, the cranium is especially important for testing hypotheses about the systematics and behavioural characteristics of this species, but is partly distorted from fracturing, displacement and plastic deformation. Here we present a detailed virtual reconstruction of the TM 266 cranium that corrects these distortions. The reconstruction confirms that S. tchadensis is a hominid and is not more closely related to the African great apes. Analysis of the basicranium further indicates that S. tchadensis might have been an upright biped, suggesting that bipedalism was present in the earliest known hominids, and probably arose soon after the divergence of the chimpanzee and human lineages.


Medicine and Science in Sports and Exercise | 2012

Effects of Footwear and Strike Type on Running Economy

Daniel P. Perl; Adam I. Daoud; Daniel E. Lieberman

PURPOSE This study tests if running economy differs in minimal shoes versus standard running shoes with cushioned elevated heels and arch supports and in forefoot versus rearfoot strike gaits. METHODS We measured the cost of transport (mL O(2)·kg(-1)·m(-1)) in subjects who habitually run in minimal shoes or barefoot while they were running at 3.0 m·s(-1) on a treadmill during forefoot and rearfoot striking while wearing minimal and standard shoes, controlling for shoe mass and stride frequency. Force and kinematic data were collected when subjects were shod and barefoot to quantify differences in knee flexion, arch strain, plantar flexor force production, and Achilles tendon-triceps surae strain. RESULTS After controlling for stride frequency and shoe mass, runners were 2.41% more economical in the minimal-shoe condition when forefoot striking and 3.32% more economical in the minimal-shoe condition when rearfoot striking (P < 0.05). In contrast, forefoot and rearfoot striking did not differ significantly in cost for either minimal- or standard-shoe running. Arch strain was not measured in the shod condition but was significantly greater during forefoot than rearfoot striking when barefoot. Plantar flexor force output was significantly higher in forefoot than in rearfoot striking and in barefoot than in shod running. Achilles tendon-triceps surae strain and knee flexion were also lower in barefoot than in standard-shoe running. CONCLUSIONS Minimally shod runners are modestly but significantly more economical than traditionally shod runners regardless of strike type, after controlling for shoe mass and stride frequency. The likely cause of this difference is more elastic energy storage and release in the lower extremity during minimal-shoe running.


Proceedings of the Royal Society of London B: Biological Sciences | 2005

The development of sex differences in digital formula from infancy in the Fels Longitudinal Study

Matthew H. McIntyre; Peter T. Ellison; Daniel E. Lieberman; Ellen W. Demerath; Bradford Towne

Relative finger lengths, especially the second-to-fourth finger length ratio, have been proposed as useful markers for prenatal testosterone action. This claim partly depends on an association of relative finger lengths in adults with related sex differences in children and infants. This paper reports the results of a study using serial radiographs to test for both sex differences in the fingers of infants and children and for a relationship between sex differences in the children and infant finger and adult finger length ratios. This is the first study using long-term serial data to evaluate the validity of finger length ratios as markers. We found not only that sex differences in finger length ratios arise prior to puberty, but that sex differences in the fingers of children are highly correlated with adult finger length ratios. Our results strongly encourage the further use of finger length ratios as markers of perinatal testosterone action.


Nature | 2005

New material of the earliest hominid from the Upper Miocene of Chad

Michel Brunet; Franck Guy; David Pilbeam; Daniel E. Lieberman; Andossa Likius; Hassane Taisso Mackaye; Marcia S. Ponce de León; Christoph P. E. Zollikofer; Patrick Vignaud

Discoveries in Chad by the Mission Paléoanthropologique Franco-Tchadienne have substantially changed our understanding of early human evolution in Africa. In particular, the TM 266 locality in the Toros-Menalla fossiliferous area yielded a nearly complete cranium (TM 266-01-60-1), a mandible, and several isolated teeth assigned to Sahelanthropus tchadensis and biochronologically dated to the late Miocene epoch (about 7 million years ago). Despite the relative completeness of the TM 266 cranium, there has been some controversy about its morphology and its status in the hominid clade. Here we describe new dental and mandibular specimens from three Toros-Menalla (Chad) fossiliferous localities (TM 247, TM 266 and TM 292) of the same age. This new material, including a lower canine consistent with a non-honing C/P3 complex, post-canine teeth with primitive root morphology and intermediate radial enamel thickness, is attributed to S. tchadensis. It expands the hypodigm of the species and provides additional anatomical characters that confirm the morphological differences between S. tchadensis and African apes. S. tchadensis presents several key derived features consistent with its position in the hominid clade close to the last common ancestor of chimpanzees and humans.


American Journal of Physical Anthropology | 1996

How and why humans grow thin skulls: Experimental evidence for systemic cortical robusticity

Daniel E. Lieberman

To what extent is cranial vault thickness (CVT) a character that is strongly linked to the genome, or to what extent does it reflect the activity of an individual prior to skeletal maturity? Experimental data from pigs and armadillos indicate that CVT increases more rapidly in exercised juveniles than in genetically similar controls, despite the low levels of strain generated by chewing or locomotion in the neurocranium. CVT increases in these individuals appear to be a consequence of systemic cortical bone growth induced by exercise. In addition, an analysis of the variability in vault thickness in the genus Homo demonstrates that, until the Holocene, there has been only a slight, general decrease in vault thickness over time with no consistent significant differences between archaic and early anatomically modern humans from the Late Pleistocene. Although there may be some genetic component to variation in CVT, exercise-related, non-genetically heritable stimuli appear to account for most of the variance between individuals. The thick cranial vaults of most hunter-gatherers and early agriculturalists suggests that they may have experienced higher levels of sustained exercise relative to body mass than the majority of recent, post-industrial humans.


The Journal of Experimental Biology | 2003

Optimization of bone growth and remodeling in response to loading in tapered mammalian limbs

Daniel E. Lieberman; Osbjorn M. Pearson; John D. Polk; Brigitte Demes; A. W. Crompton

SUMMARY How bones respond dynamically to mechanical loading through changes in shape and structure is poorly understood, particularly with respect to variations between bones. Structurally, cortical bones adapt in vivo to their mechanical environments primarily by modulating two processes, modeling and Haversian remodeling. Modeling, defined here as the addition of new bone, may occur in response to mechanical stimuli by altering bone shape or size through growth. Haversian remodeling is thought to be an adaptation to repair microcracks or prevent microcrack propagation. Here, we examine whether cortical bone in sheep limbs modulates periosteal modeling and Haversian remodeling to optimize strength relative to mass in hind-limb midshafts in response to moderate levels of exercise at different growth stages. Histomorphometry was used to compare rates of periosteal growth and Haversian remodeling in exercised and sedentary treatment groups of juvenile, subadult and young adult sheep. In vivo strain data were also collected for the tibia and metatarsal midshafts of juvenile sheep. The results suggest that limb bones initially optimize responses to loading according to the varying power requirements associated with adding mass at different locations. In juveniles, exercise induces higher rates of periosteal modeling in proximal midshafts and higher rates of Haversian remodeling in distal midshafts. Consequently, distal element midshafts experience higher strains and, presumably, have lower safety factors. As animals age, periosteal modeling rates decline and Haversian remodeling rates increase, but moderate levels of mechanical loading stimulate neither process significantly.

Collaboration


Dive into the Daniel E. Lieberman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meir Max Barak

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge