Carolyn Nabasumba
Mbarara University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carolyn Nabasumba.
PLOS ONE | 2009
Quique Bassat; Modest Mulenga; Halidou Tinto; Patrice Piola; Steffen Borrmann; Clara Menéndez; Michael Nambozi; Innocent Valea; Carolyn Nabasumba; Philip Sasi; Antonella Bacchieri; Marco Corsi; David Ubben; Ambrose Talisuna; Umberto D'Alessandro
Background Artemisinin combination therapies (ACTs) are currently the preferred option for treating uncomplicated malaria. Dihydroartemisinin-piperaquine (DHA-PQP) is a promising fixed-dose ACT with limited information on its safety and efficacy in African children. Methodology/Principal Findings The non-inferiority of DHA-PQP versus artemether-lumefantrine (AL) in children 6–59 months old with uncomplicated P. falciparum malaria was tested in five African countries (Burkina Faso, Kenya, Mozambique, Uganda and Zambia). Patients were randomised (2∶1) to receive either DHA-PQP or AL. Non-inferiority was assessed using a margin of −5% for the lower limit of the one-sided 97.5% confidence interval on the treatment difference (DHA-PQP vs. AL) of the day 28 polymerase chain reaction (PCR) corrected cure rate. Efficacy analysis was performed in several populations, and two of them are presented here: intention-to-treat (ITT) and enlarged per-protocol (ePP). 1553 children were randomised, 1039 receiving DHA-PQP and 514 AL. The PCR-corrected day 28 cure rate was 90.4% (ITT) and 94.7% (ePP) in the DHA-PQP group, and 90.0% (ITT) and 95.3% (ePP) in the AL group. The lower limits of the one-sided 97.5% CI of the difference between the two treatments were −2.80% and −2.96%, in the ITT and ePP populations, respectively. In the ITT population, the Kaplan-Meier estimate of the proportion of new infections up to Day 42 was 13.55% (95% CI: 11.35%–15.76%) for DHA-PQP vs 24.00% (95% CI: 20.11%–27.88%) for AL (p<0.0001). Conclusions/Significance DHA-PQP is as efficacious as AL in treating uncomplicated malaria in African children from different endemicity settings, and shows a comparable safety profile. The occurrence of new infections within the 42-day follow up was significantly lower in the DHA-PQP group, indicating a longer post-treatment prophylactic effect. Trial Registration Controlled-trials.com ISRCTN16263443
Lancet Infectious Diseases | 2010
Patrice Piola; Carolyn Nabasumba; Eleanor Turyakira; Mehul Dhorda; Niklas Lindegardh; Dan Nyehangane; Georges Snounou; Elizabeth A. Ashley; Rose McGready; François Nosten; Philippe J Guerin
BACKGROUND Malaria in pregnancy is associated with maternal and fetal morbidity and mortality. In 2006, WHO recommended use of artemisinin-based combination treatments during the second or third trimesters, but data on efficacy and safety in Africa were scarce. We aimed to assess whether artemether-lumefantrine was at least as efficacious as oral quinine for the treatment of uncomplicated falciparum malaria during the second and third trimesters of pregnancy in Mbarara, Uganda. METHODS We did an open-label, randomised, non-inferiority trial between October, 2006, and May, 2009, at the antenatal clinics of the Mbarara University of Science and Technology Hospital in Uganda. Pregnant women were randomly assigned (1:1) by computer generated sequence to receive either quinine hydrochloride or artemether-lumefantrine, and were followed up weekly until delivery. Our primary endpoint was cure rate at day 42, confirmed by PCR. The non-inferiority margin was a difference in cure rate of 5%. Analysis of efficacy was for all randomised patients without study deviations that could have affected the efficacy outcome. This study was registered with ClinicalTrials.gov, number NCT00495508. FINDINGS 304 women were randomly assigned, 152 to each treatment group. By day 42, 16 patients were lost to follow-up and 25 were excluded from the analysis. At day 42, 137 (99.3%) of 138 patients taking artemether-lumefantrine and 122 (97.6%) of 125 taking quinine were cured-difference 1.7% (lower limit of 95% CI -0.9). There were 290 adverse events in the quinine group and 141 in the artemether-lumefantrine group. INTERPRETATION Artemisinin derivatives are not inferior to oral quinine for the treatment of uncomplicated malaria in pregnancy and might be preferable on the basis of safety and efficacy. FUNDING Médecins Sans Frontières and the European Commission.
Malaria Journal | 2013
Pierre De Beaudrap; Eleanor Turyakira; Lisa J. White; Carolyn Nabasumba; Benon Tumwebaze; Atis Muehlenbachs; Philippe J Guerin; Yap Boum; Rose McGready; Patrice Piola
BackgroundMalaria in pregnancy (MiP) is a major public health problem in endemic areasof sub-Saharan Africa and has important consequences on birth outcome.Because MiP is a complex phenomenon and malaria epidemiology is rapidlychanging, additional evidence is still required to understand how best tocontrol malaria. This study followed a prospective cohort of pregnant womenwho had access to intensive malaria screening and prompt treatment toidentify factors associated with increased risk of MiP and to analyse howvarious characteristics of MiP affect delivery outcomes.MethodsBetween October 2006 and May 2009, 1,218 pregnant women were enrolled in aprospective cohort. After an initial assessment, they were screened weeklyfor malaria. At delivery, blood smears were obtained from the mother,placenta, cord and newborn. Multivariate analyses were performed to analysethe association between mothers’ characteristics and malaria risk, aswell as between MiP and birth outcome, length and weight at birth. Thisstudy is a secondary analysis of a trial registered with ClinicalTrials.gov,number NCT00495508.ResultsOverall, 288/1,069 (27%) mothers had 345 peripheral malaria infections. Therisk of peripheral malaria was higher in mothers who were younger, infectedwith HIV, had less education, lived in rural areas or reported no bed netuse, whereas the risk of placental infection was associated with morefrequent malaria infections and with infection during late pregnancy. Therisk of pre-term delivery and of miscarriage was increased in mothersinfected with HIV, living in rural areas and with MiP occurring within twoweeks of delivery.In adjusted analysis, birth weight but not length was reduced in babies ofmothers exposed to MiP (−60g, 95%CI: -120 to 0 for at least oneinfection and -150 g, 95%CI: -280 to −20 for >1 infections).ConclusionsIn this study, the timing, parasitaemia level and number ofperipherally-detected malaria infections, but not the presence of fever,were associated with adverse birth outcomes. Hence, prompt malaria detectionand treatment should be offered to pregnant women regardless of symptoms orother preventive measures used during pregnancy, and with increased focus onmothers living in remote areas.
Malaria Journal | 2011
Pierre De Beaudrap; Carolyn Nabasumba; Francesco Grandesso; Eleanor Turyakira; Birgit Schramm; Yap Boum; Jean-François Etard
BackgroundMalaria is a major public health problem, especially for children. However, recent reports suggest a decline in the malaria burden. The aim of this study was to assess the change in the prevalence of malaria infection among children below five years of age between 2004 and 2010 in a mesoendemic area of Uganda and to analyse the risk factors of malaria infection.MethodsTwo cross-sectional surveys were conducted in 2004 and in 2010 at the end of the rainy and dry seasons to measure the prevalence of P. falciparum infection among children less than five years of age. Rapid diagnostic tests and blood smears were used to diagnose malaria infection. In 2010, sampling was stratified by urban and rural areas. In each selected household, knowledge of malaria and bed nets, and bed net ownership and use, were assessed.ResultsIn 2004 and 2010, respectively, a total of 527 and 2,320 (999 in the urban area and 1,321 in rural areas) children less than five years old were enrolled. Prevalence of malaria infection declined from 43% (95% CI: 34-52) in 2004, to 23% (95% CI: 17-30) in rural areas in 2010 and 3% (95% CI: 2-5) in the urban area in 2010. From the rainy to dry season in 2010, prevalence decreased from 23% to 10% (95% CI: 6-14) in rural areas (P = 0.001) and remained stable from 3% to 4% (95% CI: 1-7) in the urban area (P = 0.9). The proportion of households reporting ownership and use of at least one bed net increased from 22.9% in 2004 to 64.7% in the urban area and 44.5% in rural areas in 2010 (P < 0.001). In 2010, the risk of malaria infection was consistently associated with child age and household wealth. In rural areas, malaria infection was also associated with geographic factors.ConclusionsThis study reports a significant drop in the prevalence of malaria infection among children below five years of age, paralleled by an uptake in bed-net use. However, prevalence remains unacceptably high in rural areas and is strongly associated with poverty.
American Journal of Tropical Medicine and Hygiene | 2012
Mehul Dhorda; Patrice Piola; Dan Nyehangane; Benon Tumwebaze; Aisha Nalusaji; Carolyn Nabasumba; Eleanor Turyakira; Rose McGready; Elizabeth A. Ashley; Philippe J Guerin; Georges Snounou
Improved laboratory diagnosis is critical to reduce the burden of malaria in pregnancy. Peripheral blood smears appear less sensitive than Plasmodium falciparum histidine-rich protein 2-based rapid diagnostic tests (RDTs) for placental malaria infections in studies conducted at delivery. In this study, 81 women in Uganda in the second or third trimester of pregnancy were followed-up until delivery. At each visit, peripheral blood was tested by blood smear, RDT, and nested species-specific polymerase chain reaction (PCR). Sensitivity and specificity of the tests was calculated with PCR, which detected 22 infections of P. falciparum, as the gold standard. The sensitivity and specificity of blood smears were 36.4% (95% confidence interval [CI] = 18.0-59.2%) and 99.6% (95% CI = 97.7-100%), respectively. The corresponding values for RDT were 31.8% (95% CI = 14.7-54.9%) and 100% (95% CI = 98.3-100%). The RDTs could replace blood smears for diagnosis of malaria in pregnancy by virtue of their relative ease of use. Field-based sensitive tests for malaria in pregnancy are urgently needed.
Malaria Journal | 2012
Atis Muehlenbachs; Carolyn Nabasumba; Rose McGready; Eleanor Turyakira; Benon Tumwebaze; Mehul Dhorda; Dan Nyehangane; Aisha Nalusaji; François Nosten; Philippe J Guerin; Patrice Piola
BackgroundData on efficacy of artemisinin-based combination therapy (ACT) to treat Plasmodium falciparum during pregnancy in sub-Saharan Africa is scarce. A recent open label, randomized controlled trial in Mbarara, Uganda demonstrated that artemether-lumefantrine (AL) is not inferior to quinine to treat uncomplicated malaria in pregnancy. Haemozoin can persist in the placenta following clearance of parasites, however there is no data whether ACT can influence the amount of haemozoin or the dynamics of haemozoin clearance.MethodsWomen attending antenatal clinics with weekly screening and positive blood smears by microscopy were eligible to participate in the trial and were followed to delivery. Placental haemozoin deposition and inflammation were assessed by histology. To determine whether AL was associated with increased haemozoin clearance, population haemozoin clearance curves were calculated based on the longitudinal data.ResultsOf 152 women enrolled in each arm, there were 97 and 98 placental biopsies obtained in the AL and quinine arms, respectively. AL was associated with decreased rates of moderate to high grade haemozoin deposition (13.3% versus 25.8%), which remained significant after correcting for gravidity, time of infection, re-infection, and parasitaemia. The amount of haemozoin proportionately decreased with the duration of time between treatment and delivery and this decline was greater in the AL arm. Haemozoin was not detected in one third of biopsies and the prevalence of inflammation was low, reflecting the efficacy of antenatal care with early detection and prompt treatment of malaria.ConclusionsPlacental haemozoin deposition was decreased in the AL arm demonstrating a relationship between pharmacological properties of drug to treat antenatal malaria and placental pathology at delivery. Histology may be considered an informative outcome for clinical trials to evaluate malaria control in pregnancy.Trial registrationREGISTRY:http://clinicaltrials.gov/ct2/show/NCT00495508
PLOS Neglected Tropical Diseases | 2008
Philippe J Guerin; Lisbeth M. Næss; Carole Fogg; Einar Rosenqvist; Loretxu Pinoges; Francis Bajunirwe; Carolyn Nabasumba; Ray Borrow; Leif O. Frøholm; Salah Ghabri; Vincent Batwala; Rogers Twesigye; Ingeborg S. Aaberge; John-Arne Røttingen; Patrice Piola; Dominique A. Caugant
Background Neisseria meningitidis serogroup A is the main causative pathogen of meningitis epidemics in sub-Saharan Africa. In recent years, serogroup W135 has also been the cause of epidemics. Mass vaccination campaigns with polysaccharide vaccines are key elements in controlling these epidemics. Facing global vaccine shortage, we explored the use of fractional doses of a licensed A/C/Y/W135 polysaccharide meningococcal vaccine. Methods and Findings We conducted a randomized, non-inferiority trial in 750 healthy volunteers 2–19 years old in Mbarara, Uganda, to compare the immune response of the full dose of the vaccine versus fractional doses (1/5 or 1/10). Safety and tolerability data were collected for all subjects during the 4 weeks following the injection. Pre- and post-vaccination sera were analyzed by measuring serum bactericidal activity (SBA) with baby rabbit complement. A responder was defined as a subject with a ≥4-fold increase in SBA against a target strain from each serogroup and SBA titer ≥128. For serogroup W135, 94% and 97% of the vaccinees in the 1/5- and 1/10-dose arms, respectively, were responders, versus 94% in the full-dose arm; for serogroup A, 92% and 88% were responders, respectively, versus 95%. Non-inferiority was demonstrated between the full dose and both fractional doses in SBA seroresponse against serogroups W135 and Y, in total population analysis. Non-inferiority was shown between the full and 1/5 doses for serogroup A in the population non-immune prior to vaccination. Non-inferiority was not shown for any of the fractionate doses for serogroup C. Safety and tolerability data were favourable, as observed in other studies. Conclusions While the advent of conjugate A vaccine is anticipated to largely contribute to control serogroup A outbreaks in Africa, the scale-up of its production will not cover the entire “Meningitis Belt” target population for at least the next 3 to 5 years. In view of the current shortage of meningococcal vaccines for Africa, the use of 1/5 fractional doses should be considered as an alternative in mass vaccination campaigns. Trial Registration ClinicalTrials.gov NCT00271479
Trials | 2013
Hypolite Muhindo Mavoko; Carolyn Nabasumba; Halidou Tinto; Umberto D’Alessandro; Martin P. Grobusch; Pascal Lutumba; Jean-Pierre Van Geertruyden
BackgroundArtemisinin-based combination therapy is currently recommended by the World Health Organization as first-line treatment of uncomplicated malaria. Recommendations were adapted in 2010 regarding rescue treatment in case of treatment failure. Instead of quinine monotherapy, it should be combined with an antibiotic with antimalarial properties; alternatively, another artemisinin-based combination therapy may be used. However, for informing these policy changes, no clear evidence is yet available. The need to provide the policy makers with hard data on the appropriate rescue therapy is obvious. We hypothesize that the efficacy of the same artemisinin-based combination therapy used as rescue treatment is as efficacious as quinine + clindamycin or an alternative artemisinin-based combination therapy, without the risk of selecting drug resistant strains.DesignWe embed a randomized, open label, three-arm clinical trial in a longitudinal cohort design following up children with uncomplicated malaria until they are malaria parasite free for 4 weeks. The study is conducted in both the Democratic Republic of Congo and Uganda and performed in three steps. In the first step, the pre-randomized controlled trial (RCT) phase, children aged 12 to 59 months with uncomplicated malaria are treated with the recommended first-line drug and constitute a cohort that is passively followed up for 42 days. If the patients experience an uncomplicated malaria episode between days 14 and 42 of follow-up, they are randomized either to quinine + clindamycin, or an alternative artemisinin-based combination therapy, or the same first-line artemisinin-based combination therapy to be followed up for 28 additional days. If between days 14 and 28 the patients experience a recurrent parasitemia, they are retreated with the recommended first-line regimen and actively followed up for another 28 additional days (step three; post-RCT phase). The same methodology is followed for each subsequent failure. In any case, all patients without an infection at day 28 are classified as treatment successes and reach a study endpoint. The RCT phase allows the comparison of the safety and efficacy of three rescue treatments. The prolonged follow-up of all children until they are 28 days parasite-free allows us to assess epidemiological-, host- and parasite-related predictors for repeated malaria infection.Trial registrationNCT01374581 and PACTR201203000351114
Malaria Journal | 2012
Carine Van Malderen; Jean-Pierre Van Geertruyden; Sonia Machevo; Raquel González; Quique Bassat; Ambrose Talisuna; Adoke Yeka; Carolyn Nabasumba; Patrice Piola; Atwine Daniel; Eleanor Turyakira; Pascale Forret; Chantal Van Overmeir; Harry van Loen; Annie Robert; Umberto D’Alessandro
BackgroundMalaria is a leading cause of mortality, particularly in sub-Saharan African children. Prompt and efficacious treatment is important as patients may progress within a few hours to severe and possibly fatal disease. Chlorproguanil-dapsone-artesunate (CDA) was a promising artemisinin-based combination therapy (ACT), but its development was prematurely stopped because of safety concerns secondary to its associated risk of haemolytic anaemia in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. The objective of the study was to assess whether CDA treatment and G6PD deficiency are risk factors for a post-treatment haemoglobin drop in African children <5 years of age with uncomplicated malaria.MethodsThis case–control study was performed in the context of a larger multicentre randomized clinical trial comparing safety and efficacy of four different ACT in children with uncomplicated malaria. Children, who after treatment experienced a haemoglobin drop ≥2 g/dl (cases) within the first four days (days 0, 1, 2, and 3), were compared with those without an Hb drop (controls). Cases and controls were matched for study site, sex, age and baseline haemoglobin measurements. Data were analysed using a conditional logistic regression model.ResultsG6PD deficiency prevalence, homo- or hemizygous, was 8.5% (10/117) in cases and 6.8% (16/234) in controls (p = 0.56). The risk of a Hb drop ≥2 g/dl was not associated with either G6PD deficiency (adjusted odds ratio (AOR): 0.81; p = 0.76) or CDA treatment (AOR: 1.28; p = 0.37) alone. However, patients having both risk factors tended to have higher odds (AOR: 11.13; p = 0.25) of experiencing a Hb drop ≥2 g/dl within the first four days after treatment, however this finding was not statistically significant, mainly because G6PD deficient patients treated with CDA were very few. In non-G6PD deficient individuals, the proportion of cases was similar between treatment groups while in G6PD-deficient individuals, haemolytic anaemia occurred more frequently in children treated with CDA (56%) than in those treated with other ACT (29%), though the difference was not significant (p = 0.49).ConclusionThe use of CDA for treating uncomplicated malaria may increase the risk of haemolytic anaemia in G6PD-deficient children.
PLOS ONE | 2014
Dan Kajungu; Annette Erhart; Ambrose Talisuna; Quique Bassat; Corine Karema; Carolyn Nabasumba; Michael Nambozi; Halidou Tinto; Peter G. Kremsner; Martin Meremikwu; Umberto D'Alessandro; Niko Speybroeck
Background Pharmacovigilance programmes monitor and help ensuring the safe use of medicines which is critical to the success of public health programmes. The commonest method used for discovering previously unknown safety risks is spontaneous notifications. In this study we examine the use of data mining algorithms to identify signals from adverse events reported in a phase IIIb/IV clinical trial evaluating the efficacy and safety of several Artemisinin-based combination therapies (ACTs) for treatment of uncomplicated malaria in African children. Methods We used paediatric safety data from a multi-site, multi-country clinical study conducted in seven African countries (Burkina Faso, Gabon, Nigeria, Rwanda, Uganda, Zambia, and Mozambique). Each site compared three out of four ACTs, namely amodiaquine-artesunate (ASAQ), dihydroartemisinin-piperaquine (DHAPQ), artemether-lumefantrine (AL) or chlorproguanil/dapsone and artesunate (CD+A). We examine two pharmacovigilance signal detection methods, namely proportional reporting ratio and Bayesian Confidence Propagation Neural Network on the clinical safety dataset. Results Among the 4,116 children (6–59 months old) enrolled and followed up for 28 days post treatment, a total of 6,238 adverse events were reported resulting into 346 drug-event combinations. Nine signals were generated both by proportional reporting ratio and Bayesian Confidence Propagation Neural Network. A review of the manufacturer package leaflets, an online Multi-Drug Symptom/Interaction Checker (DoubleCheckMD) and further by therapeutic area experts reduced the number of signals to five. The ranking of some drug-adverse reaction pairs on the basis of their signal index differed between the two methods. Conclusions Our two data mining methods were equally able to generate suspected signals using the pooled safety data from a phase IIIb/IV clinical trial. This analysis demonstrated the possibility of utilising clinical studies safety data for key pharmacovigilance activities like signal detection and evaluation. This approach can be applied to complement the spontaneous reporting systems which are limited by under reporting.