Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolyn Schutt is active.

Publication


Featured researches published by Carolyn Schutt.


Drug Design Development and Therapy | 2013

Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment

Stuart Ibsen; Carolyn Schutt; Sadik C. Esener

The inherently toxic nature of chemotherapy drugs is essential for them to kill cancer cells but is also the source of the detrimental side effects experienced by patients. One strategy to reduce these side effects is to limit the healthy tissue exposure by encapsulating the drugs in a vehicle that demonstrates a very low leak rate in circulation while simultaneously having the potential for rapid release once inside the tumor. Designing a vehicle with these two opposing properties is the major challenge in the field of drug delivery. A triggering event is required to change the vehicle from its stable circulating state to its unstable release state. A unique mechanical actuation type trigger is possible by harnessing the size changes that occur when microbubbles interact with ultrasound. These mechanical actuations can burst liposomes and cell membranes alike allowing for rapid drug release and facilitating delivery into nearby cells. The tight focusing ability of the ultrasound to just a few cubic millimeters allows for precise control over the tissue location where the microbubbles destabilize the vehicles. This allows the ultrasound to highlight the tumor tissue and cause rapid drug release from any carrier present. Different vehicle designs have been demonstrated from carrying drug on just the surface of the microbubble itself to encapsulating the microbubble along with the drug within a liposome. In the future, nanoparticles may extend the circulation half-life of these ultrasound triggerable drug-delivery vehicles by acting as nucleation sites of ultrasound-induced mechanical actuation. In addition to the drug delivery capability, the microbubble size changes can also be used to create imaging contrast agents that could allow the internal chemical environment of a tumor to be studied to help improve the diagnosis and detection of cancer. The ability to attain truly tumor-specific release from circulating drug-delivery vehicles is an exciting future prospect to reduce chemotherapy side effects while increasing drug effectiveness.


Nature Communications | 2015

Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans

Stuart Ibsen; Ada Tong; Carolyn Schutt; Sadik C. Esener; Sreekanth H. Chalasani

A major challenge in neuroscience is to reliably activate individual neurons, particularly those in deeper brain regions. Current optogenetic approaches require invasive surgical procedures to deliver light of specific wavelengths to target cells to activate or silence them. Here, we demonstrate the use of low-pressure ultrasound as a non-invasive trigger to activate specific ultrasonically sensitized neurons in the nematode, Caenorhabditis elegans. We first show that wild-type animals are insensitive to low-pressure ultrasound and require gas-filled microbubbles to transduce the ultrasound wave. We find that neuron-specific misexpression of TRP-4, the pore-forming subunit of a mechanotransduction channel, sensitizes neurons to ultrasound stimulus, resulting in behavioural outputs. Furthermore, we use this approach to manipulate the function of sensory neurons and interneurons and identify a role for PVD sensory neurons in modifying locomotory behaviours. We suggest that this method can be broadly applied to manipulate cellular functions in vivo.


Journal of Controlled Release | 2011

A novel nested liposome drug delivery vehicle capable of ultrasound triggered release of its payload.

Stuart Ibsen; Michael Benchimol; Dmitri Simberg; Carolyn Schutt; Jason Steiner; Sadik C. Esener

The use of focused ultrasound can be an effective method to locally highlight tumor tissue and specifically trigger the activation of echogenic drug delivery vehicles in an effort to reduce systemic chemotherapy side effects. Here we demonstrate a unique ultrasound triggered vehicle design and fabrication method where the payload and a perfluorocarbon gas microbubble are both encapsulated within the internal aqueous space of a liposome. This nested lipid shell geometry both stabilized the microbubble and ensured it was spatially close enough to interact with the liposome membrane at all times. The internal microbubble was shown to fragment the outer liposome membrane upon exposure to ultrasound at intensities of 1-1.5MPa. The focused ultrasound allowed the release of the internal payload to localized regions within tissue phantoms. The vehicles showed high payload loading efficiency of 16%, stability in blood of several hours, and low level macrophage recognition in vitro. High speed fluorescent videos present the first optical images of such vehicles interacting with ultrasound. This ability to open the outer membrane in small regions of deep tissue could provide a second level of spatial and temporal control beyond biochemical targeting, making these particles promising for in vivo animal studies.


Soft Matter | 2013

Phospholipid/Carbocyanine Dye-Shelled Microbubbles as Ultrasound-Modulated Fluorescent Contrast Agents

Michael Benchimol; Mark J. Hsu; Carolyn Schutt; David J. Hall; Robert F. Mattrey; Sadik C. Esener

Fluorescent microbubbles have been fabricated with the capacity to have their emission modulated by ultrasound. These contrast agent particles could potentially be used in the future to extract fluorescence modulation from a strong light background to increase imaging depth and resolution in scattering media. Fluorescence intensity modulation was demonstrated at the ultrasound driving frequency.


Small | 2015

Recovery of Drug Delivery Nanoparticles from Human Plasma Using an Electrokinetic Platform Technology

Stuart Ibsen; Avery Sonnenberg; Carolyn Schutt; Rajesh Mukthavaram; Yasan Yeh; Inanc Ortac; Sareh Manouchehri; Santosh Kesari; Sadik C. Esener; Michael J. Heller

The effect of complex biological fluids on the surface and structure of nanoparticles is a rapidly expanding field of study. One of the challenges holding back this research is the difficulty of recovering therapeutic nanoparticles from biological samples due to their small size, low density, and stealth surface coatings. Here, the first demonstration of the recovery and analysis of drug delivery nanoparticles from undiluted human plasma samples through the use of a new electrokinetic platform technology is presented. The particles are recovered from plasma through a dielectrophoresis separation force that is created by innate differences in the dielectric properties between the unaltered nanoparticles and the surrounding plasma. It is shown that this can be applied to a wide range of drug delivery nanoparticles of different morphologies and materials, including low-density nanoliposomes. These recovered particles can then be analyzed using different methods including scanning electron microscopy to monitor surface and structural changes that result from plasma exposure. This new recovery technique can be broadly applied to the recovery of nanoparticles from high conductance fluids in a wide range of applications.


Proceedings of SPIE | 2011

Ultrasound-modulated fluorescent contrast agent for optical imaging through turbid media

Carolyn Schutt; Michael Benchimol; Mark J. Hsu; Sadik C. Esener

Optical imaging in a highly scattering medium is effective only at very shallow depths which limits its use as a diagnostic tool in biomedical imaging. By combining optical and acoustic modalities, high-contrast, physiologicallyrelevant optical information at higher spatial resolutions can be achieved. Hybrid imaging modalities such as acoustooptic and photoacoustic imaging improve resolution over conventional optical imaging, but tissue scattering results in poor signal-to-background ratios especially in deeper tissues. To overcome these challenges, we have developed a novel microbubble (MB) contrast agent surface-loaded with a self-quenching fluorophore. In response to ultrasound, the MB expands and contracts, generating changes in fluorophore surface density. The changes in physical separation between fluorophores modulate the quenching efficiency and produce a fluorescence intensity modulation. To our knowledge, this is the first experimental demonstration of ultrasound modulation of fluorescence using a self-quenching MB scheme. The modulation is spatially localized to the ultrasound focal zone where the pressure is greatest and the largest MB oscillations are induced. The modulated signal can be extracted from a large constant light background, increasing detection sensitivity. This technique can enable sensitive optical imaging with ultrasound-scale sub-millimeter spatial resolution, overcoming significant challenges of optical imaging in deep tissue. The contrast agent MBs were prepared with a shell of phospholipid and lipophilic self-quenching fluorophore. MB ultrasound response was studied in a custom setup which monitored fluorescence emitted from an insonified sample. Fluorescence signals displayed clearly modulated intensity and the fast Fourier transform (FFT) showed a strong component at the ultrasound driving frequency.


Small | 2014

Manipulating nanoscale features on the surface of dye-loaded microbubbles to increase their ultrasound-modulated fluorescence output.

Carolyn Schutt; Stuart Ibsen; Michael Benchimol; Mark J. Hsu; Sadik C. Esener

The nanoscale surface features of lipid-coated microbubbles can dramatically affect how the lipids interact with one another as the microbubble diameter expands and contracts under the influence of ultrasound. During microbubble manufacturing, the different lipid shell species naturally partition forming concentrated lipid islands. In this study the dynamics of how these nanoscale islands accommodate the expansion of the microbubbles are monitored by measuring the fluorescence intensity changes that occur as self-quenching lipophilic dye molecules embedded in the lipid layer change their distance from one another. It was found that when the dye molecules were concentrated in islands, less than 5% of the microbubbles displayed measurable fluorescence intensity modulation indicating the islands were not able to expand sufficiently for the dye molecules to separate from one another. When the microbubbles were heated and cooled rapidly through the lipid transition temperature the islands were melted creating an even distribution of dye about the surface. This resulted in over 50% of the microbubbles displaying the fluorescence-modulated signal indicating that the dye molecules could now separate sufficiently to change their self-quenching efficiency. The separation of the surface lipids in these different formations has significant implications for microbubble development as ultrasound and optical contrast agents.


Ultrasonics | 2014

The behavior of lipid debris left on cell surfaces from microbubble based ultrasound molecular imaging.

Stuart Ibsen; Guixin Shi; Carolyn Schutt; Linda Shi; Kyle David Suico; Michael Benchimol; Viviana Serra; Dmitri Simberg; Michael W. Berns; Sadik C. Esener

Lipid monolayer coated microbubbles are currently being developed to identify vascular regions that express certain surface proteins as part of the new technique of ultrasound molecular imaging. The microbubbles are functionalized with targeting ligands which bind to the desired cells holding the microbubbles in place as the remaining unbound microbubbles are eliminated from circulation. Subsequent scanning with ultrasound can detect the highly reflectant microbubbles that are left behind. The ultrasound scanning and detection process results in the destruction of the microbubble, creating lipid fragments from the monolayer. Here we demonstrate that microbubbles targeted to 4T1 murine breast cancer cells and human umbilical cord endothelial cells leave behind adhered fragments of the lipid monolayer after exposure to ultrasound with peak negative pressures of 0.18 and 0.8MPa. Most of the observed fragments were large enough to be resistant to receptor mediated endocytosis. The fragments were not observed to incorporate into the lipid membrane of the cell over a period of 96min. They were not observed to break into smaller pieces or significantly change shape but they were observed to undergo translation and rotation across the cell surface as the cells migrated over the substrate. These large fragments will apparently remain on the surface of the targeted cells for significant periods of time and need to be considered for their potential effects on blood flow through the microcapillaries and potential for immune system recognition.


Journal of the Acoustical Society of America | 2014

The influence of distance between microbubbles on the fluid flow produced during ultrasound exposure

Carolyn Schutt; Stuart Ibsen; William Thrift; Sadik C. Esener

The collapse dynamics of lipid monolayer-coated microbubbles in the clinically-relevant size range under 6 μm in diameter have not been studied directly due to their small size obscuring the collapse visualization. This study investigates the influence of inter-microbubble distance on the shape of lipid debris clouds created by the collapse of the microbubble destroying the microbubble lipid monolayer. The shape was highly influenced by the fluid motion that occurred as the microbubbles collapsed. It was observed that at inter-microbubble distances smaller than 37 μm the microbubbles began to interact with one another resulting in distorted and ellipsoid-shaped debris clouds. At inter-microbubble distances less than 10 μm, significantly elongated debris clouds were observed that extended out from the original microbubble location in a single direction. These distortions show a significant distance-dependent interaction between microbubbles. It was observed that microbubbles in physical contact with one another behaved in the same manner as separate microbubbles less than 10 μm apart creating significantly elongated debris clouds. It can be hypothesized that small inter-microbubble distances influence the microbubble to collapse asymmetrically resulting in the creation of fluid jets that contribute to the formation of debris fields that are elongated in a single direction.


Journal of the Acoustical Society of America | 2011

Localized activation and cellular effects of ultrasound triggered drug delivery vehicles with encapsulated microbubbles

Stuart Ibsen; Michael Benchimol; Dmitri Simberg; Carolyn Schutt; Jason Steiner; Sadik C. Esener

The harmful side effects of chemotherapy originate from indiscriminate exposure of healthy tissue to the drugs. The goal of targeted drug delivery is to reduce these side effects by encapsulating concentrated drug in a vehicle which releases it only in the tumor region. Low intensity focused ultrasound can be used as a trigger to specifically activate these vehicles by highlighting only tumor tissue, creating a stark differentiation with healthy tissue. A new injectable drug delivery vehicle has been developed with a stabilized nested lipid shell geometry that encapsulates a high capacity chemotherapy payload, and a stabilized microbubble into one structure. Ultrasound affects the microbubble only in the small focal volume, creating a localized shockwave which ruptures the vehicles outer membrane triggering pinpoint release in tissue phantoms. These shockwaves, and their interactions with the delivery vehicle membranes and live cells, have been documented for the first time using a custom system which co...

Collaboration


Dive into the Carolyn Schutt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart Ibsen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark J. Hsu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guixin Shi

University of California

View shared research outputs
Top Co-Authors

Avatar

Inanc Ortac

University of California

View shared research outputs
Top Co-Authors

Avatar

Jason Steiner

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge