Carolyne Falank
Maine Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carolyne Falank.
Blood | 2017
Michelle M. McDonald; Michaela R. Reagan; Scott E. Youlten; Sindhu T. Mohanty; Anja Seckinger; Rachael Terry; Jessica Pettitt; Marija Simic; Tegan L. Cheng; Alyson Morse; Lawrence M. T. Le; David Abi-Hanna; Ina Kramer; Carolyne Falank; Heather Fairfield; Irene M. Ghobrial; Paul A. Baldock; David G. Little; Michaela Kneissel; Karin Vanderkerken; J. H. Duncan Bassett; Graham R. Williams; Babatunde O. Oyajobi; Dirk Hose; Tri Giang Phan; Peter I. Croucher
Multiple myeloma (MM) is a plasma cell cancer that develops in the skeleton causing profound bone destruction and fractures. The bone disease is mediated by increased osteoclastic bone resorption and suppressed bone formation. Bisphosphonates used for treatment inhibit bone resorption and prevent bone loss but fail to influence bone formation and do not replace lost bone, so patients continue to fracture. Stimulating bone formation to increase bone mass and fracture resistance is a priority; however, targeting tumor-derived modulators of bone formation has had limited success. Sclerostin is an osteocyte-specific Wnt antagonist that inhibits bone formation. We hypothesized that inhibiting sclerostin would prevent development of bone disease and increase resistance to fracture in MM. Sclerostin was expressed in osteocytes from bones from naive and myeloma-bearing mice. In contrast, sclerostin was not expressed by plasma cells from 630 patients with myeloma or 54 myeloma cell lines. Mice injected with 5TGM1-eGFP, 5T2MM, or MM1.S myeloma cells demonstrated significant bone loss, which was associated with a decrease in fracture resistance in the vertebrae. Treatment with anti-sclerostin antibody increased osteoblast numbers and bone formation rate but did not inhibit bone resorption or reduce tumor burden. Treatment with anti-sclerostin antibody prevented myeloma-induced bone loss, reduced osteolytic bone lesions, and increased fracture resistance. Treatment with anti-sclerostin antibody and zoledronic acid combined increased bone mass and fracture resistance when compared with treatment with zoledronic acid alone. This study defines a therapeutic strategy superior to the current standard of care that will reduce fractures for patients with MM.
Frontiers in Endocrinology | 2016
Carolyne Falank; Heather Fairfield; Michaela R. Reagan
In the year 2000, Hanahan and Weinberg (1) defined the six Hallmarks of Cancer as: self-sufficiency in growth signals, evasion of apoptosis, insensitivity to antigrowth mechanisms, tissue invasion and metastasis, limitless replicative potential, and sustained angiogenesis. Eleven years later, two new Hallmarks were added to the list (avoiding immune destruction and reprograming energy metabolism) and two new tumor characteristics (tumor-promoting inflammation and genome instability and mutation) (2). In multiple myeloma (MM), a destructive cancer of the plasma cell that grows predominantly in the bone marrow (BM), it is clear that all these hallmarks and characteristics are in play, contributing to tumor initiation, drug resistance, disease progression, and relapse. Bone marrow adipose tissue (BMAT) is a newly recognized contributor to MM oncogenesis and disease progression, potentially affecting MM cell metabolism, immune action, inflammation, and influences on angiogenesis. In this review, we discuss the confirmed and hypothetical contributions of BMAT to MM development and disease progression. BMAT has been understudied due to technical challenges and a previous lack of appreciation for the endocrine function of this tissue. In this review, we define the dynamic, responsive, metabolically active BM adipocyte. We then describe how BMAT influences MM in terms of: lipids/metabolism, hypoxia/angiogenesis, paracrine or endocrine signaling, and bone disease. We then discuss the connection between BMAT and systemic inflammation and potential treatments to inhibit the feedback loops between BM adipocytes and MM cells that support MM progression. We aim for researchers to use this review to guide and help prioritize their experiments to develop better treatments or a cure for cancers, such as MM, that associate with and may depend on BMAT.
Annals of the New York Academy of Sciences | 2016
Heather Fairfield; Carolyne Falank; Lindsey Avery; Michaela R. Reagan
Multiple myeloma (MM) is a B cell malignancy resulting in osteolytic lesions and fractures. In the disease state, bone healing is limited owing to increased osteoclastic and decreased osteoblastic activity, as well as an MM‐induced forward‐feedback cycle where bone‐embedded growth factors further enhance tumor progression as bone is resorbed. Recent work on somatic mutation in MM tumors has provided insight into cytogenetic changes associated with this disease; the initiating driver mutations causing MM are diverse because of the complexity and multitude of mutations inherent in MM tumor cells. This manuscript provides an overview of MM pathogenesis by summarizing cytogenic changes related to oncogenes and tumor suppressors associated with MM, reviewing risk factors, and describing the disease progression from monoclonal gammopathy of undetermined significance to overt MM. It also highlights the importance of the bone marrow microenvironment (BMM) in the establishment and progression of MM, as well as associated MM‐induced bone disease, and the relationship of the bone marrow to current and future therapeutics. This review highlights why understanding the basic biology of the healthy and diseased BMM is crucial in the quest for better treatments and work toward a cure for genetically diverse diseases such as MM.
Journal of Cellular Physiology | 2018
Heather Fairfield; Carolyne Falank; Elizabeth Harris; Victoria E. DeMambro; Michelle M. McDonald; Jessica Pettit; Sindhu T. Mohanty; Peter I. Croucher; Ina Kramer; Michaela Kneissel; Clifford J. Rosen; Michaela R. Reagan
The bone marrow niche is a dynamic and complex microenvironment that can both regulate, and be regulated by the bone matrix. Within the bone marrow (BM), mesenchymal stromal cell (MSC) precursors reside in a multi‐potent state and retain the capacity to differentiate down osteoblastic, adipogenic, or chondrogenic lineages in response to numerous biochemical cues. These signals can be altered in various pathological states including, but not limited to, osteoporotic‐induced fracture, systemic adiposity, and the presence of bone‐homing cancers. Herein we provide evidence that signals from the bone matrix (osteocytes) determine marrow adiposity by regulating adipogenesis in the bone marrow. Specifically, we found that physiologically relevant levels of Sclerostin (SOST), which is a Wnt‐inhibitory molecule secreted from bone matrix‐embedded osteocytes, can induce adipogenesis in 3T3‐L1 cells, mouse ear‐ and BM‐derived MSCs, and human BM‐derived MSCs. We demonstrate that the mechanism of SOST induction of adipogenesis is through inhibition of Wnt signaling in pre‐adipocytes. We also demonstrate that a decrease of sclerostin in vivo, via both genetic and pharmaceutical methods, significantly decreases bone marrow adipose tissue (BMAT) formation. Overall, this work demonstrates a direct role for SOST in regulating fate determination of BM‐adipocyte progenitors. This provides a novel mechanism for which BMAT is governed by the local bone microenvironment, which may prove relevant in the pathogenesis of certain diseases involving marrow adipose. Importantly, with anti‐sclerostin therapy at the forefront of osteoporosis treatment and a greater recognition of the role of BMAT in disease, these data are likely to have important clinical implications.
Endocrinology | 2017
Sheila Bornstein; Michele Moschetta; Yawara Kawano; Antonio Sacco; Daisy Huynh; Daniel J. Brooks; Salomon Manier; Heather Fairfield; Carolyne Falank; Aldo M. Roccaro; Kenichi Nagano; Roland Baron; Mary Bouxein; Calvin P.H. Vary; Irene M. Ghobrial; Clifford J. Rosen; Michaela R. Reagan
&NA; Obesity during maturation can affect the growing skeleton directly and indirectly, although these effects and the mechanisms behind them are not fully understood. Our objective was to determine how a high‐fat diet with or without metformin treatment affects skeletal development. We also sought to characterize changes that occur in white adipose tissue, circulating metabolites, lipids, and gut microbiota. A diet‐induced obesity C57BL/6J mouse model was used to test the effects of obesity and metformin on bone using bone histomorphometry and microcomputed tomography. Bone marrow adipose tissue was quantified with osmium tetroxide microcomputed tomography and histology. Dual‐energy x‐ray absorptiometry was used to analyze body composition. Hematoxylin and eosin staining was used to assess changes in white adipose depots, mass spectrometry was used for circulating lipids and protein metabolite analysis, and ribosomal RNA sequencing was used for gut microbiome analysis. Mice fed a high fat‐diet since wean displayed increased medullary areas and decreased osteoblast numbers in the long bones; this phenotype was partially normalized by metformin. Marrow and inguinal adipose expansion was also noted in obese mice, and this was partially normalized by metformin. A drug‐by‐diet interaction was noted for circulating lipid molecules, protein metabolites, and gut microbiome taxonomical units. Obesity was not detrimental to trabecular bone in growing mice, but bone marrow medullary expansion was observed, likely resulting from inhibition of osteoblastogenesis, and this was partially reversed by metformin treatment.
Current Osteoporosis Reports | 2017
Luna Soley; Carolyne Falank; Michaela R. Reagan
Purpose of ReviewMultiple myeloma remains an incurable disease, largely due to the tumor-supportive role of the bone marrow microenvironment. Bone marrow adipose tissue (BMAT) is one component of the fertile microenvironment which is believed to contribute to myeloma progression and drug resistance, as well as participate in a vicious cycle of osteolysis and tumor growth.Recent FindingsMicroRNAs (miRNAs) have recently emerged as instrumental regulators of cellular processes that enable the development and dissemination of cancer. This review highlights the intersection between two emerging research fields and pursues the scientific and clinical implications of miRNA transfer between BMAT and myeloma cells.SummaryThis review provides a concise and provocative summary of the evidence to support exosome-mediated transfer of tumor-supportive miRNAs. The work may prompt researchers to better elucidate the mechanisms by which this novel means of genetic communication between tumor cells and their environment could someday yield targeted therapeutics.
ACS Biomaterials Science & Engineering | 2017
Anna M. Sitarski; Heather Fairfield; Carolyne Falank; Michaela R. Reagan
Biological models are necessary tools for gaining insight into underlying mechanisms governing complex pathologies such as cancer in the bone. Models range from in vitro tissue culture systems to in vivo models and can be used with corresponding epidemiological and clinical data to understand disease etiology, progression, driver mutations, and signaling pathways. In bone cancer, as with many other cancers, in vivo models are often too complex to study specific cell-cell interactions or protein roles, and 2D models are often too simple to accurately represent disease processes. Consequently, researchers have increasingly turned to 3D in vitro tissue engineered models as a useful compromise. In this review, tissue engineered 3D models of bone and cancer are described in depth and compared to 2D models. Biomaterials and cell types used are described, and future directions in the field of tissue engineered bone cancer models are proposed.
Current Molecular Biology Reports | 2017
Carolyne Falank; Heather Fairfield; Michaela R. Reagan
AbstractᅟThis review highlights the recent advances in our understanding of adipocyte contributions to carcinogenesis or cancer disease progression for cancers in the bone.Purpose of ReviewIn this review, we aim to describe bone marrow adipose tissue and discuss the soluble adipocyte-derived cytokines (adipokines) or endocrine factors, adipocyte-derived lipids, and the actual or putative juxtacrine signaling between bone marrow adipocytes and tumor cells in the bone marrow. This relationship likely affects tumor cell initiation, proliferation, metastasis, and/or drug resistance.Recent FindingsBone marrow adipose may affect tumor proliferation, drug resistance, or cancer-induced bone disease and hence may be a new target in the fight against cancer.SummaryOverall, evidence is mixed regarding the role of bone marrow adipose and adipocytes in cancer progression, and more research in this arena is necessary to determine how these bone marrow microenvironmental cells contribute to malignancies in the marrow to identify novel, potentially targetable pathways.
Calcified Tissue International | 2017
Michelle M. McDonald; Heather Fairfield; Carolyne Falank; Michaela R. Reagan
bonekey Reports | 2016
Ushashi Dadwal; Carolyne Falank; Heather Fairfield; Sarah Linehan; Clifford J. Rosen; David L. Kaplan; Julie A. Sterling; Michaela R. Reagan