Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle M. McDonald is active.

Publication


Featured researches published by Michelle M. McDonald.


Seminars in Cell & Developmental Biology | 2008

Bone remodeling during fracture repair : The cellular picture

Aaron Schindeler; Michelle M. McDonald; Paul Bokko; David G. Little

Fracture healing is a complex event that involves the coordination of a variety of different processes. Repair is typically characterized by four overlapping stages: the initial inflammatory response, soft callus formation, hard callus formation, initial bony union and bone remodeling. However, repair can also be seen to represent a juxtaposition of two distinct forces: anabolism or tissue formation, and catabolism or remodeling. These anabolic/catabolic concepts are useful for understanding bone repair without giving the false impression of temporally distinct stages that operate independently. They are also relevant when considering intervention. In normal bone development, bone remodeling conventionally refers to the removal of calcified bone tissue by osteoclasts. However, in the context of bone repair there are two phases of tissue catabolism: the removal of the initial cartilaginous soft callus, followed by the eventual remodeling of the bony hard callus. In this review, we have attempted to examine catabolism/remodeling in fractures in a systematic fashion. The first section briefly summarizes the traditional four-stage view of fracture repair in a physiological manner. The second section highlights some of the limitations of using a temporal rather than process-driven model and summarizes the anabolic/catabolic paradigm of fracture repair. The third section examines the cellular participants in soft callus remodeling and in particular the role of the osteoclast in endochondral ossification. Finally, the fourth section examines the effects of delaying osteoclast-dependent hard callus remodeling and also poses questions regarding the crosstalk between anabolism and catabolism in the latter stages of fracture repair.


Biomaterials | 2010

The incorporation of strontium and zinc into a calcium-silicon ceramic for bone tissue engineering.

Hala Zreiqat; Yogambha Ramaswamy; Chengtie Wu; Angelo Paschalidis; Zufu Lu; Barbara James; Oliver Birke; Michelle M. McDonald; David G. Little; Colin R. Dunstan

In this study we developed novel scaffolds through the controlled substitution and incorporation of strontium and zinc into a calcium-silicon system to form Sr-Hardystonite (Sr-Ca(2)ZnSi(2)O(7), Sr-HT). The physical and biological properties of Sr-HT were compared to Hardystonite (Ca(2)ZnSi(2)O(7)) [HT]. We showed that Sr-HT scaffolds are porous with interconnected porous network (interconnectivity: 99%) and large pore size (300-500 microm) and an overall porosity of 78%, combined with a relatively high compressive strength (2.16+/-0.52 MPa). These properties are essential for enhancing bone ingrowth in load-bearing applications. Sr-HT ceramic scaffolds induced the attachment and differentiation of human bone derived cells (HOB), compared to that for the HT scaffolds. Sr-HT scaffolds enhanced expression of alkaline phosphatase, Runx-2, osteopontin, osteocalcin and bone sialoprotein. The in vivo osteoconductivity of the scaffolds was assessed at 3 and 6 weeks following implantation in tibial bone defects in rats. Histological staining revealed rapid new growth of bone into the pores of the 3D scaffolds with the Sr-HT and HT, relative to the beta-tricalcium phosphate (beta-TCP). In vivo, HT and Sr-HT produced distinct differences in the patterns of degradation of the materials, and their association with TRAP positive osteoclast-like cells with HT appearing more resistant compared to both Sr-HT and beta-TCP.


Journal of Bone and Mineral Research | 2007

Optimal Timing of a Single Dose of Zoledronic Acid to Increase Strength in Rat Fracture Repair

Negin Amanat; Michelle M. McDonald; Craig Godfrey; Lynne E. Bilston; David G. Little

We hypothesized that ZA treatment would bolster fracture repair. In a rat model for closed fracture healing, a single dose of ZA at 0, 1, or 2 wk after fracture significantly increased BMC and strength of the healed fracture. Delaying the dose (1 or 2 wk after fracture) displayed superior results compared with dosing at the time of fracture.


Journal of Biological Chemistry | 2007

Novel Role of Y1 Receptors in the Coordinated Regulation of Bone and Energy Homeostasis

Paul A. Baldock; Susan J. Allison; Pernilla Lundberg; Nicola J. Lee; Katy Slack; En-Ju D. Lin; Ronaldo F. Enriquez; Michelle M. McDonald; Lei Zhang; Matthew J. During; David G. Little; John A. Eisman; Edith M. Gardiner; Ernie Yulyaningsih; Shu Lin; Amanda Sainsbury; Herbert Herzog

The importance of neuropeptide Y (NPY) and Y2 receptors in the regulation of bone and energy homeostasis has recently been demonstrated. However, the contributions of the other Y receptors are less clear. Here we show that Y1 receptors are expressed on osteoblastic cells. Moreover, bone and adipose tissue mass are elevated in Y1-/- mice with a generalized increase in bone formation on cortical and cancellous surfaces. Importantly, the inhibitory effects of NPY on bone marrow stromal cells in vitro are absent in cells derived from Y1-/- mice, indicating a direct action of NPY on bone cells via this Y receptor. Interestingly, in contrast to Y2 receptor or germ line Y1 receptor deletion, conditional deletion of hypothalamic Y1 receptors in adult mice did not alter bone homeostasis, food intake, or adiposity. Furthermore, deletion of both Y1 and Y2 receptors did not produce additive effects in bone or adiposity. Thus Y1 receptor pathways act powerfully to inhibit bone production and adiposity by nonhypothalamic pathways, with potentially direct effects on bone tissue through a single pathway with Y2 receptors.


Journal of Bone and Mineral Research | 2005

Manipulation of the Anabolic and Catabolic Responses With OP‐1 and Zoledronic Acid in a Rat Critical Defect Model

David G. Little; Michelle M. McDonald; Richard J. Bransford; Craig Godfrey; Negin Amanat

Bone repair involves both anabolic and catabolic responses. We hypothesized that anabolic treatment with OP‐1 (BMP‐7) and anti‐catabolic treatment with zoledronic acid could be synergistic. In a rat critical defect, this combination therapy produced significant increases in new bone volume and strength.


Journal of Bone and Mineral Research | 2006

Hypothalamic Regulation of Cortical Bone Mass: Opposing Activity of Y2 Receptor and Leptin Pathways

Paul A. Baldock; Susan J. Allison; Michelle M. McDonald; Amanda Sainsbury; Ronaldo F. Enriquez; David G. Little; John A. Eisman; Edith M. Gardiner; Herbert Herzog

NeuropeptideY–, Y2 receptor (Y2)‐, and leptin‐deficient mice show similar anabolic action in cancellous bone but have not been assessed in cortical bone. Cortical bone mass is elevated in Y2−/− mice through greater osteoblast activity. In contrast, leptin deficiency results in reduced bone mass. We show opposing central regulation of cortical bone.


PLOS ONE | 2009

Neuropeptide Y Knockout Mice Reveal a Central Role of NPY in the Coordination of Bone Mass to Body Weight

Paul A. Baldock; Nicola J. Lee; Frank Driessler; Shu Lin; Susan J. Allison; Bernhard Stehrer; En-Ju D. Lin; Lei Zhang; Ronald F. Enriquez; Iris P. L. Wong; Michelle M. McDonald; Matthew J. During; Dominique D. Pierroz; Katy Slack; Yc Shi; Ernie Yulyaningsih; Aygul Aljanova; David G. Little; Serge Livio Ferrari; Amanda Sainsbury; John A. Eisman; Herbert Herzog

Changes in whole body energy levels are closely linked to alterations in body weight and bone mass. Here, we show that hypothalamic signals contribute to the regulation of bone mass in a manner consistent with the central perception of energy status. Mice lacking neuropeptide Y (NPY), a well-known orexigenic factor whose hypothalamic expression is increased in fasting, have significantly increased bone mass in association with enhanced osteoblast activity and elevated expression of bone osteogenic transcription factors, Runx2 and Osterix. In contrast, wild type and NPY knockout (NPY −/−) mice in which NPY is specifically over expressed in the hypothalamus (AAV-NPY+) show a significant reduction in bone mass despite developing an obese phenotype. The AAV-NPY+ induced loss of bone mass is consistent with models known to mimic the central effects of fasting, which also show increased hypothalamic NPY levels. Thus these data indicate that, in addition to well characterized responses to body mass, skeletal tissue also responds to the perception of nutritional status by the hypothalamus independently of body weight. In addition, the reduction in bone mass by AAV NPY+ administration does not completely correct the high bone mass phenotype of NPY −/− mice, indicating the possibility that peripheral NPY may also be an important regulator of bone mass. Indeed, we demonstrate the expression of NPY specifically in osteoblasts. In conclusion, these data identifies NPY as a critical integrator of bone homeostatic signals; increasing bone mass during times of obesity when hypothalamic NPY expression levels are low and reducing bone formation to conserve energy under ‘starving’ conditions, when hypothalamic NPY expression levels are high.


Nature Reviews Cancer | 2016

Bone metastasis: the importance of the neighbourhood.

Peter I. Croucher; Michelle M. McDonald; T. John Martin

During the past decade preclinical studies have defined many of the mechanisms used by tumours to hijack the skeleton and promote bone metastasis. This has led to the development and widespread clinical use of bone-targeted drugs to prevent skeletal-related events. This understanding has also identified a critical dependency between colonizing tumour cells and the cells of bone. This is particularly important when tumour cells first arrive in bone, adapt to their new microenvironment and enter a long-lived dormant state. In this Review, we discuss the role of different bone cell types in supporting disseminated tumour cell dormancy and reactivation, and highlight the new opportunities this provides for targeting the bone microenvironment to control dormancy and bone metastasis.


Bone | 2010

Intermittent PTH((1-34)) does not increase union rates in open rat femoral fractures and exhibits attenuated anabolic effects compared to closed fractures.

Magnus Tägil; Michelle M. McDonald; Alyson Morse; Lauren Peacock; Kathy Mikulec; Negin Amanat; Craig Godfrey; David G. Little

Intermittent Parathyroid Hormone (PTH)((1-34)) has an established place in osteoporosis treatment, but also shows promising results in models of bone repair. Previous studies have been dominated by closed fracture models, where union is certain. One of the major clinical needs for anabolic therapies is the treatment of open and high energy fractures at risk of non-union. In the present study we therefore compared PTH((1-34)) treatment in models of both open and closed fractures. 108 male Wistar rats were randomly assigned to undergo standardized closed fractures or open osteotomies with periosteal stripping. 27 rats in each group were treated s.c. with PTH((1-34)) at a dose of 50 mug/kg 5 days a week, the other 27 receiving saline. Specimens were harvested at 6 weeks for mechanical testing (n=17) or histological analysis (n=10). In closed fractures, union by any definition was 100% in both PTH((1-34)) and saline groups at 6 weeks. In open fractures, the union rate was significantly lower (p<0.05), regardless of treatment. In open fractures the mechanically defined union rate was 10/16 (63%) in saline and 11/17 (65%) in PTH((1-34)) treated fractures. By histology, the union rate was 3/9 (33%) with saline and 5/10 (50%) with PTH((1-34)). Radiological union was seen in 13/25 (52%) for saline and 15/26 (58%) with PTH((1-34)). Open fractures were associated with decreases in bone mineral content (BMC) and volumetric bone mineral density (vBMD) on quantitative computerized tomography (QCT) analysis compared to closed fractures. PTH((1-34)) treatment in both models led to significant increases in callus BMC and volume as well as trabecular bone volume/total volume (BV/TV), as assessed histologically (p<0.01). In closed fractures, PTH((1-34)) had a robust effect on callus size and strength, with a 60% increase in peak torque (p<0.05). In the open fractures that united and could be tested, PTH((1-34)) treatment also increased peak torque by 49% compared to saline (p<0.05). In conclusion, intermittent PTH((1-34)) produced significant increases in callus size and strength in closed fractures, but failed to increase the rate of union in an open fracture model. In the open fractures that did unite, a muted response to PTH was seen compared to closed fractures. Further research is required to determine if PTH((1-34)) is an appropriate anabolic treatment for open fractures.


Endocrinology | 2008

The Murine Stanniocalcin 2 Gene Is a Negative Regulator of Postnatal Growth

Andrew C. Chang; Jeff Hook; Frances A. Lemckert; Michelle M. McDonald; Mai-Anh Nguyen; Edna C. Hardeman; David G. Little; Peter Gunning; Roger R. Reddel

Stanniocalcin (STC), a secreted glycoprotein, was first studied in fish as a classical hormone with a role in regulating serum calcium levels. There are two closely related proteins in mammals, STC1 and STC2, with functions that are currently unclear. Both proteins are expressed in numerous mammalian tissues rather than being secreted from a specific endocrine gland. No phenotype has been detected yet in Stc1-null mice, and to investigate whether Stc2 could have compensated for the loss of Stc1, we have now generated Stc2(-/-) and Stc1(-/-) Stc2(-/-) mice. Although Stc1 is expressed in the ovary and lactating mouse mammary glands, like the Stc1(-/-) mice, the Stc1(-/-) Stc2(-/-) mice had no detected decrease in fertility, fecundity, or weight gain up until weaning. Serum calcium and phosphate levels were normal in Stc1(-/-) Stc2(-/-) mice, indicating it is unlikely that the mammalian stanniocalcins have a major physiological role in mineral homeostasis. Mice with Stc2 deleted were 10-15% larger and grew at a faster rate than wild-type mice from 4 wk onward, and the Stc1(-/-) Stc2(-/-) mice had a similar growth phenotype. This effect was not mediated through the GH/IGF-I axis. The results are consistent with STC2 being a negative regulator of postnatal growth.

Collaboration


Dive into the Michelle M. McDonald's collaboration.

Top Co-Authors

Avatar

David G. Little

Children's Hospital at Westmead

View shared research outputs
Top Co-Authors

Avatar

Alyson Morse

Children's Hospital at Westmead

View shared research outputs
Top Co-Authors

Avatar

Kathy Mikulec

Children's Hospital at Westmead

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lauren Peacock

Children's Hospital at Westmead

View shared research outputs
Top Co-Authors

Avatar

Peter I. Croucher

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Paul A. Baldock

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig Godfrey

Children's Hospital at Westmead

View shared research outputs
Researchain Logo
Decentralizing Knowledge