Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carrie D. Nicora is active.

Publication


Featured researches published by Carrie D. Nicora.


The ISME Journal | 2009

Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea

Sarah M Sowell; Larry J. Wilhelm; Angela D. Norbeck; Mary S. Lipton; Carrie D. Nicora; Douglas F. Barofsky; Craig A. Carlson; Richard D. Smith; Stephen J. Giovanonni

The northwestern Sargasso Sea undergoes annual cycles of productivity with increased production in spring corresponding to periods of upwelling, and oligotrophy in summer and autumn, when the water column becomes highly stratified. The biological productivity of this region is reduced during stratified periods as a result of low concentrations of phosphorus and nitrogen in the euphotic zone. To better understand the mechanisms of microbial survival in this oligotrophic environment, we used capillary liquid chromatography (LC)-tandem mass spectrometry to detect microbial proteins in surface samples collected in September 2005. A total of 2215 peptides that mapped to 236 SAR11 proteins, 1911 peptides that mapped to 402 Prochlorococcus proteins and 2407 peptides that mapped to 404 Synechococcus proteins were detected. Mass spectra from SAR11 periplasmic substrate-binding proteins accounted for a disproportionately large fraction of the peptides detected, consistent with observations that these extremely small cells devote a large proportion of their volume to periplasm. Abundances were highest for periplasmic substrate-binding proteins for phosphate, amino acids, phosphonate, sugars and spermidine. Proteins implicated in the prevention of oxidative damage and protein refolding were also abundant. Our findings support the view that competition for multiple nutrients in oligotrophic systems is extreme, but nutrient flux is sufficient to sustain microbial community activity.


Molecular Cell | 2009

Subunit Compositions of the RNA-Silencing Enzymes Pol IV and Pol V Reveal Their Origins as Specialized Forms of RNA Polymerase II

Thomas S. Ream; Jeremy R. Haag; Andrzej T. Wierzbicki; Carrie D. Nicora; Angela D. Norbeck; Jian-Kang Zhu; Gretchen Hagen; Tom J. Guilfoyle; Ljiljana Paša-Tolić

In addition to RNA polymerases I, II, and III, the essential RNA polymerases present in all eukaryotes, plants have two additional nuclear RNA polymerases, abbreviated as Pol IV and Pol V, that play nonredundant roles in siRNA-directed DNA methylation and gene silencing. We show that Arabidopsis Pol IV and Pol V are composed of subunits that are paralogous or identical to the 12 subunits of Pol II. Four subunits of Pol IV are distinct from their Pol II paralogs, six subunits of Pol V are distinct from their Pol II paralogs, and four subunits differ between Pol IV and Pol V. Importantly, the subunit differences occur in key positions relative to the template entry and RNA exit paths. Our findings support the hypothesis that Pol IV and Pol V are Pol II-like enzymes that evolved specialized roles in the production of noncoding transcripts for RNA silencing and genome defense.


Applied and Environmental Microbiology | 2009

Proteogenomic Monitoring of Geobacter Physiology during Stimulated Uranium Bioremediation

Michael J. Wilkins; Nathan C. VerBerkmoes; Kenneth H. Williams; Stephen J. Callister; Paula J. Mouser; Hila Elifantz; N'guessan Al; Brian C. Thomas; Carrie D. Nicora; Manesh B Shah; Paul E. Abraham; Mary S. Lipton; Derek R. Lovley; Robert L. Hettich; Philip E. Long; Jillian F. Banfield

ABSTRACT Implementation of uranium bioremediation requires methods for monitoring the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here, we report a proteomics-based approach for simultaneously documenting the strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO, aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching liquid chromatography-tandem mass spectrometry spectra to peptides predicted from seven isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and Geobacter bemidjiensis-like strains and later possible emergence of M21 and G. bemidjiensis-like strains more closely related to Geobacter lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-coenzyme A and pyruvate for central metabolism, while abundant peptides matching tricarboxylic acid cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics-independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.


Molecular Cell | 2012

In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing.

Jeremy R. Haag; Thomas S. Ream; Michelle R. Marasco; Carrie D. Nicora; Angela D. Norbeck; Ljiljana Paša-Tolić

In Arabidopsis, RNA-dependent DNA methylation and transcriptional silencing involves three nuclear RNA polymerases that are biochemically undefined: the presumptive DNA-dependent RNA polymerases Pol IV and Pol V and the putative RNA-dependent RNA polymerase RDR2. Here we demonstrate their RNA polymerase activities in vitro. Unlike Pol II, Pols IV and V require an RNA primer, are insensitive to α-amanitin, and differ in their ability to displace the nontemplate DNA strand during transcription. Biogenesis of 24 nt small interfering RNAs (siRNAs), which guide cytosine methylation to corresponding sequences, requires both Pol IV and RDR2, which physically associate in vivo. Whereas Pol IV does not require RDR2 for activity, RDR2 is nonfunctional in the absence of associated Pol IV. These results suggest that the physical and mechanistic coupling of Pol IV and RDR2 results in the channeled synthesis of double-stranded precursors for 24 nt siRNA biogenesis.


The ISME Journal | 2014

Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer

Kelly C. Wrighton; Cindy J. Castelle; Michael J. Wilkins; Laura A. Hug; Itai Sharon; Brian C. Thomas; Kim M. Handley; Sean W. Mullin; Carrie D. Nicora; Andrea Singh; Mary S. Lipton; Philip E. Long; Kenneth H. Williams; Jillian F. Banfield

Fermentation-based metabolism is an important ecosystem function often associated with environments rich in organic carbon, such as wetlands, sewage sludge and the mammalian gut. The diversity of microorganisms and pathways involved in carbon and hydrogen cycling in sediments and aquifers and the impacts of these processes on other biogeochemical cycles remain poorly understood. Here we used metagenomics and proteomics to characterize microbial communities sampled from an aquifer adjacent to the Colorado River at Rifle, CO, USA, and document interlinked microbial roles in geochemical cycling. The organic carbon content in the aquifer was elevated via acetate amendment of the groundwater occurring over 2 successive years. Samples were collected at three time points, with the objective of extensive genome recovery to enable metabolic reconstruction of the community. Fermentative community members include organisms from a new phylum, Melainabacteria, most closely related to Cyanobacteria, phylogenetically novel members of the Chloroflexi and Bacteroidales, as well as candidate phyla genomes (OD1, BD1-5, SR1, WWE3, ACD58, TM6, PER and OP11). These organisms have the capacity to produce hydrogen, acetate, formate, ethanol, butyrate and lactate, activities supported by proteomic data. The diversity and expression of hydrogenases suggests the importance of hydrogen metabolism in the subsurface. Our proteogenomic data further indicate the consumption of fermentation intermediates by Proteobacteria can be coupled to nitrate, sulfate and iron reduction. Thus, fermentation carried out by previously unknown members of sediment microbial communities may be an important driver of nitrogen, hydrogen, sulfur, carbon and iron cycling.


The ISME Journal | 2012

Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens.

Frank O. Aylward; Kristin E. Burnum; Jarrod J. Scott; Garret Suen; Susannah G. Tringe; Sandra M. Adams; Kerrie Barry; Carrie D. Nicora; Paul D. Piehowski; Samuel O. Purvine; Gabriel J. Starrett; Lynne Goodwin; Richard D. Smith; Mary S. Lipton; Cameron R. Currie

Herbivores gain access to nutrients stored in plant biomass largely by harnessing the metabolic activities of microbes. Leaf-cutter ants of the genus Atta are a hallmark example; these dominant neotropical herbivores cultivate symbiotic fungus gardens on large quantities of fresh plant forage. As the external digestive system of the ants, fungus gardens facilitate the production and sustenance of millions of workers. Using metagenomic and metaproteomic techniques, we characterize the bacterial diversity and physiological potential of fungus gardens from two species of Atta. Our analysis of over 1.2 Gbp of community metagenomic sequence and three 16S pyrotag libraries reveals that in addition to harboring the dominant fungal crop, these ecosystems contain abundant populations of Enterobacteriaceae, including the genera Enterobacter, Pantoea, Klebsiella, Citrobacter and Escherichia. We show that these bacterial communities possess genes associated with lignocellulose degradation and diverse biosynthetic pathways, suggesting that they play a role in nutrient cycling by converting the nitrogen-poor forage of the ants into B-vitamins, amino acids and other cellular components. Our metaproteomic analysis confirms that bacterial glycosyl hydrolases and proteins with putative biosynthetic functions are produced in both field-collected and laboratory-reared colonies. These results are consistent with the hypothesis that fungus gardens are specialized fungus–bacteria communities that convert plant material into energy for their ant hosts. Together with recent investigations into the microbial symbionts of vertebrates, our work underscores the importance of microbial communities in the ecology and evolution of herbivorous metazoans.


Applied and Environmental Microbiology | 2008

Proteomic Analysis of Stationary Phase in the Marine Bacterium “Candidatus Pelagibacter ubique”

Sarah M Sowell; Angela D. Norbeck; Mary S. Lipton; Carrie D. Nicora; Stephen J. Callister; Richard D. Smith; Douglas F. Barofsky; Stephen J. Giovannoni

ABSTRACT “Candidatus Pelagibacter ubique,” an abundant marine alphaproteobacterium, subsists in nature at low ambient nutrient concentrations and may often be exposed to nutrient limitation, but its genome reveals no evidence of global regulatory mechanisms for adaptation to stationary phase. High-resolution capillary liquid chromatography coupled online to an LTQ mass spectrometer was used to build an accurate mass and time (AMT) tag library that enabled quantitative examination of proteomic differences between exponential- and stationary-phase “Ca. Pelagibacter ubique” cells cultivated in a seawater medium. The AMT tag library represented 65% of the predicted protein-encoding genes. “Ca. Pelagibacter ubique” appears to respond adaptively to stationary phase by increasing the abundance of a suite of proteins that contribute to homeostasis rather than undergoing a major remodeling of its proteome. Stationary-phase abundances increased significantly for OsmC and thioredoxin reductase, which may mitigate oxidative damage in “Ca. Pelagibacter,” as well as for molecular chaperones, enzymes involved in methionine and cysteine biosynthesis, proteins involved in ρ-dependent transcription termination, and the signal transduction enzyme CheY-FisH. We speculate that this limited response may enable “Ca. Pelagibacter ubique” to cope with ambient conditions that deprive it of nutrients for short periods and, furthermore, that the ability to resume growth overrides the need for a more comprehensive global stationary-phase response to create a capacity for long-term survival.


Applied and Environmental Microbiology | 2013

Leucoagaricus gongylophorus Produces Diverse Enzymes for the Degradation of Recalcitrant Plant Polymers in Leaf-Cutter Ant Fungus Gardens

Frank O. Aylward; Kristin E. Burnum-Johnson; Susannah G. Tringe; Clotilde Teiling; Daniel M. Tremmel; Joseph A. Moeller; Jarrod J. Scott; Kerrie Barry; Paul D. Piehowski; Carrie D. Nicora; Stephanie Malfatti; Matthew E. Monroe; Samuel O. Purvine; Lynne Goodwin; Richard D. Smith; George M. Weinstock; Nicole M. Gerardo; Garret Suen; Mary S. Lipton; Cameron R. Currie

ABSTRACT Plants represent a large reservoir of organic carbon comprised primarily of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous fungus that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and, using genomic and metaproteomic tools, we investigate its role in lignocellulose degradation in the gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in ant gardens and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that likely play an important role in lignocellulose degradation. Our study provides a detailed analysis of plant biomass degradation in leaf-cutter ant fungus gardens and insight into the enzymes underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.


The ISME Journal | 2011

Proteome insights into the symbiotic relationship between a captive colony of Nasutitermes corniger and its hindgut microbiome

Kristin E. Burnum; Stephen J. Callister; Carrie D. Nicora; Samuel O. Purvine; Philip Hugenholtz; Falk Warnecke; Rudolf H. Scheffrahn; Richard D. Smith; Mary S. Lipton

We analyzed the metaproteome of the bacterial community resident in the hindgut paunch of the wood-feeding ‘higher’ termite (Nasutitermes) and identified 886 proteins, 197 of which have known enzymatic function. Using these enzymes, we reconstructed complete metabolic pathways revealing carbohydrate transport and metabolism, nitrogen fixation and assimilation, energy production, amino-acid synthesis and significant pyruvate ferredoxin/flavodoxin oxidoreductase protein redundancy. Our results suggest that the activity associated with these enzymes may have more of a role in the symbiotic relationship between the hindgut microbial community and its termite host than activities related to cellulose degradation.


PLOS ONE | 2013

Proteogenomic Analysis of a Thermophilic Bacterial Consortium Adapted to Deconstruct Switchgrass

Patrik D'haeseleer; John M. Gladden; Martin Allgaier; Patrik S. G. Chain; Susannah G. Tringe; Stephanie Malfatti; Joshua T. Aldrich; Carrie D. Nicora; Errol W. Robinson; Ljiljana Paša-Tolić; Philip Hugenholtz; Blake A. Simmons; Steven W. Singer

Thermophilic bacteria are a potential source of enzymes for the deconstruction of lignocellulosic biomass. However, the complement of proteins used to deconstruct biomass and the specific roles of different microbial groups in thermophilic biomass deconstruction are not well-explored. Here we report on the metagenomic and proteogenomic analyses of a compost-derived bacterial consortium adapted to switchgrass at elevated temperature with high levels of glycoside hydrolase activities. Near-complete genomes were reconstructed for the most abundant populations, which included composite genomes for populations closely related to sequenced strains of Thermus thermophilus and Rhodothermus marinus, and for novel populations that are related to thermophilic Paenibacilli and an uncultivated subdivision of the little-studied Gemmatimonadetes phylum. Partial genomes were also reconstructed for a number of lower abundance thermophilic Chloroflexi populations. Identification of genes for lignocellulose processing and metabolic reconstructions suggested Rhodothermus, Paenibacillus and Gemmatimonadetes as key groups for deconstructing biomass, and Thermus as a group that may primarily metabolize low molecular weight compounds. Mass spectrometry-based proteomic analysis of the consortium was used to identify >3000 proteins in fractionated samples from the cultures, and confirmed the importance of Paenibacillus and Gemmatimonadetes to biomass deconstruction. These studies also indicate that there are unexplored proteins with important roles in bacterial lignocellulose deconstruction.

Collaboration


Dive into the Carrie D. Nicora's collaboration.

Top Co-Authors

Avatar

Richard D. Smith

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mary S. Lipton

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Samuel O. Purvine

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Wei Jun Qian

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David G. Camp

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Callister

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Thomas O. Metz

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Angela D. Norbeck

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kristin E. Burnum-Johnson

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Tujin Shi

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge