Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristin E. Burnum-Johnson is active.

Publication


Featured researches published by Kristin E. Burnum-Johnson.


PLOS ONE | 2013

Proteomic Profiling of Exosomes Leads to the Identification of Novel Biomarkers for Prostate Cancer

Diederick Duijvesz; Kristin E. Burnum-Johnson; Marina A. Gritsenko; A. Marije Hoogland; Mirella S. Vredenbregt-van den Berg; Rob Willemsen; Theo M. Luider; Ljiljana Paša-Tolić; Guido Jenster

Background Current markers for prostate cancer, such as PSA lack specificity. Therefore, novel biomarkers are needed. Unfortunately, the complexity of body fluids often hampers biomarker discovery. An attractive alternative approach is the isolation of small vesicles, i.e. exosomes, ∼100 nm, which contain proteins that are specific to the tissue from which they are derived and therefore can be considered as treasure chests for disease-specific biomarker discovery. Materials and Methods Exosomes were isolated from 2 immortalized primary prostate epithelial cells (PNT2C2 and RWPE-1) and 2 PCa cell lines (PC346C and VCaP) by ultracentrifugation. After tryptic digestion, proteomic analyses utilized a nanoLC coupled with an LTQ-Orbitrap operated in tandem MS (MS/MS) mode. Accurate Mass and Time (AMT) tag approach was employed for peptide identification and quantitation. Candidate biomarkers were validated by Western blotting and Immunohistochemistry. Results Proteomic characterization resulted in the identification of 248, 233, 169, and 216 proteins by at least 2 peptides in exosomes from PNT2C2, RWPE-1, PC346C, and VCaP, respectively. Statistical analyses revealed 52 proteins differently abundant between PCa and control cells, 9 of which were more abundant in PCa. Validation by Western blotting confirmed a higher abundance of FASN, XPO1 and PDCD6IP (ALIX) in PCa exosomes. Conclusions Identification of exosomal proteins using high performance LC-FTMS resulted in the discovery of PDCD6IP, FASN, XPO1 and ENO1 as new candidate biomarkers for prostate cancer.


Applied and Environmental Microbiology | 2013

Leucoagaricus gongylophorus Produces Diverse Enzymes for the Degradation of Recalcitrant Plant Polymers in Leaf-Cutter Ant Fungus Gardens

Frank O. Aylward; Kristin E. Burnum-Johnson; Susannah G. Tringe; Clotilde Teiling; Daniel M. Tremmel; Joseph A. Moeller; Jarrod J. Scott; Kerrie Barry; Paul D. Piehowski; Carrie D. Nicora; Stephanie Malfatti; Matthew E. Monroe; Samuel O. Purvine; Lynne Goodwin; Richard D. Smith; George M. Weinstock; Nicole M. Gerardo; Garret Suen; Mary S. Lipton; Cameron R. Currie

ABSTRACT Plants represent a large reservoir of organic carbon comprised primarily of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous fungus that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and, using genomic and metaproteomic tools, we investigate its role in lignocellulose degradation in the gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in ant gardens and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that likely play an important role in lignocellulose degradation. Our study provides a detailed analysis of plant biomass degradation in leaf-cutter ant fungus gardens and insight into the enzymes underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.


Genome Medicine | 2012

Mass spectrometry for translational proteomics: progress and clinical implications

Erin S. Baker; Tao Liu; Vladislav A. Petyuk; Kristin E. Burnum-Johnson; Yehia M. Ibrahim; Gordon A. Anderson; Richard D. Smith

The utility of mass spectrometry (MS)-based proteomic analyses and their clinical applications have been increasingly recognized over the past decade due to their high sensitivity, specificity and throughput. MS-based proteomic measurements have been used in a wide range of biological and biomedical investigations, including analysis of cellular responses and disease-specific post-translational modifications. These studies greatly enhance our understanding of the complex and dynamic nature of the proteome in biology and disease. Some MS techniques, such as those for targeted analysis, are being successfully applied for biomarker verification, whereas others, including global quantitative analysis (for example, for biomarker discovery), are more challenging and require further development. However, recent technological improvements in sample processing, instrumental platforms, data acquisition approaches and informatics capabilities continue to advance MS-based applications. Improving the detection of significant changes in proteins through these advances shows great promise for the discovery of improved biomarker candidates that can be verified pre-clinically using targeted measurements, and ultimately used in clinical studies - for example, for early disease diagnosis or as targets for drug development and therapeutic intervention. Here, we review the current state of MS-based proteomics with regard to its advantages and current limitations, and we highlight its translational applications in studies of protein biomarkers.


Analytical Chemistry | 2013

High-speed tandem mass spectrometric in situ imaging by nanospray desorption electrospray ionization mass spectrometry.

Ingela Lanekoff; Kristin E. Burnum-Johnson; Mathew Thomas; Joshua Tl Short; James P. Carson; Jeeyeon Cha; Sudhansu K. Dey; Pengxiang Yang; Maria C. Prieto Conaway; Julia Laskin

Nanospray desorption electrospray ionization (nano-DESI) combined with tandem mass spectrometry (MS/MS), high-resolution mass analysis of the fragment ions (m/Δm = 17 500 at m/z 200), and rapid spectral acquisition enabled simultaneous imaging and identification of a large number of metabolites and lipids from 92 selected m/z windows (±1 Da) with a spatial resolution of better than 150 μm. Mouse uterine sections of implantation sites on day 6 of pregnancy were analyzed in the ambient environment without any sample pretreatment. MS/MS imaging was performed by scanning the sample under the nano-DESI probe at 10 μm/s, while higher-energy collision-induced dissociation (HCD) spectra were acquired for a targeted inclusion list of 92 m/z values at a rate of ∼6.3 spectra/s. Molecular ions and their corresponding fragments, separated by high-resolution mass analysis, were assigned on the basis of accurate mass measurement. Using this approach, we were able to identify and image both abundant and low-abundance isobaric and isomeric species within each m/z window. MS/MS analysis enabled efficient separation and identification of isomeric and isobaric phospholipids that are difficult to separate in full-scan mode. Furthermore, we identified several metabolites associated with early pregnancy and obtained the first 2D images of these molecules.


Proteomics | 2015

Enhancing bottom-up and top-down proteomic measurements with ion mobility separations.

Erin S. Baker; Kristin E. Burnum-Johnson; Yehia M. Ibrahim; Daniel J. Orton; Matthew E. Monroe; Ryan T. Kelly; Ronald J. Moore; Xing Zhang; Roger Théberge; Catherine E. Costello; Richard D. Smith

Proteomic measurements with greater throughput, sensitivity, and structural information are essential for improving both in‐depth characterization of complex mixtures and targeted studies. While LC separation coupled with MS (LC–MS) measurements have provided information on thousands of proteins in different sample types, the introduction of a separation stage that provides further component resolution and rapid structural information has many benefits in proteomic analyses. Technical advances in ion transmission and data acquisition have made ion mobility separations an opportune technology to be easily and effectively incorporated into LC–MS proteomic measurements for enhancing their information content. Herein, we report on applications illustrating increased sensitivity, throughput, and structural information by utilizing IMS–MS and LC–IMS–MS measurements for both bottom‐up and top‐down proteomics measurements.


PLOS Pathogens | 2014

Metabolic Reprogramming during Purine Stress in the Protozoan Pathogen Leishmania donovani

Jessica L. Martin; Phillip A. Yates; Radika Soysa; Joshua F. Alfaro; Feng Yang; Kristin E. Burnum-Johnson; Vladislav A. Petyuk; Karl K. Weitz; David G. Camp; Richard D. Smith; Phillip A. Wilmarth; Larry L. David; Gowthaman Ramasamy; Peter J. Myler; Nicola S. Carter

The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over three months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6–48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms.


Mbio | 2013

Proteomic and Transcriptomic Analyses of “Candidatus Pelagibacter ubique” Describe the First PII-Independent Response to Nitrogen Limitation in a Free-Living Alphaproteobacterium

Daniel P. Smith; J. Cameron Thrash; Carrie D. Nicora; Mary S. Lipton; Kristin E. Burnum-Johnson; Paul Carini; Richard D. Smith; Stephen J. Giovannoni

ABSTRACT Nitrogen is one of the major nutrients limiting microbial productivity in the ocean, and as a result, most marine microorganisms have evolved systems for responding to nitrogen stress. The highly abundant alphaproteobacterium “Candidatus Pelagibacter ubique,” a cultured member of the order Pelagibacterales (SAR11), lacks the canonical GlnB, GlnD, GlnK, and NtrB/NtrC genes for regulating nitrogen assimilation, raising questions about how these organisms respond to nitrogen limitation. A survey of 266 Alphaproteobacteria genomes found these five regulatory genes nearly universally conserved, absent only in intracellular parasites and members of the order Pelagibacterales, including “Ca. Pelagibacter ubique.” Global differences in mRNA and protein expression between nitrogen-limited and nitrogen-replete cultures were measured to identify nitrogen stress responses in “Ca. Pelagibacter ubique” strain HTCC1062. Transporters for ammonium (AmtB), taurine (TauA), amino acids (YhdW), and opines (OccT) were all elevated in nitrogen-limited cells, indicating that they devote increased resources to the assimilation of nitrogenous organic compounds. Enzymes for assimilating amine into glutamine (GlnA), glutamate (GltBD), and glycine (AspC) were similarly upregulated. Differential regulation of the transcriptional regulator NtrX in the two-component signaling system NtrY/NtrX was also observed, implicating it in control of the nitrogen starvation response. Comparisons of the transcriptome and proteome supported previous observations of uncoupling between transcription and translation in nutrient-deprived “Ca. Pelagibacter ubique” cells. Overall, these data reveal a streamlined, PII-independent response to nitrogen stress in “Ca. Pelagibacter ubique,” and likely other Pelagibacterales, and show that they respond to nitrogen stress by allocating more resources to the assimilation of nitrogen-rich organic compounds. IMPORTANCE Pelagibacterales are extraordinarily abundant and play a pivotal role in marine geochemical cycles, as one of the major recyclers of labile dissolved organic matter. They are also models for understanding how streamlining selection can reshape chemoheterotroph metabolism. Streamlining and its broad importance to environmental microbiology are emerging slowly from studies that reveal the complete genomes of uncultured organisms. Here, we report another remarkable example of streamlined metabolism in Pelagibacterales, this time in systems that control nitrogen assimilation. Pelagibacterales are major contributors to metatranscriptomes and metaproteomes from ocean systems, where patterns of gene expression are used to gain insight into ocean conditions and geochemical cycles. The data presented here supply background that is essential to interpreting data from field studies. Pelagibacterales are extraordinarily abundant and play a pivotal role in marine geochemical cycles, as one of the major recyclers of labile dissolved organic matter. They are also models for understanding how streamlining selection can reshape chemoheterotroph metabolism. Streamlining and its broad importance to environmental microbiology are emerging slowly from studies that reveal the complete genomes of uncultured organisms. Here, we report another remarkable example of streamlined metabolism in Pelagibacterales, this time in systems that control nitrogen assimilation. Pelagibacterales are major contributors to metatranscriptomes and metaproteomes from ocean systems, where patterns of gene expression are used to gain insight into ocean conditions and geochemical cycles. The data presented here supply background that is essential to interpreting data from field studies.


mSystems | 2016

MPLEx: a Robust and Universal Protocol for Single-Sample Integrative Proteomic, Metabolomic, and Lipidomic Analyses

Ernesto S. Nakayasu; Carrie D. Nicora; Amy C. Sims; Kristin E. Burnum-Johnson; Young Mo Kim; Jennifer E. Kyle; Melissa M. Matzke; Anil K. Shukla; Rosalie K. Chu; Athena A. Schepmoes; Jon M. Jacobs; Ralph S. Baric; Bobbie Jo M Webb-Robertson; Richard D. Smith; Thomas O. Metz

In systems biology studies, the integration of multiple omics measurements (i.e., genomics, transcriptomics, proteomics, metabolomics, and lipidomics) has been shown to provide a more complete and informative view of biological pathways. Thus, the prospect of extracting different types of molecules (e.g., DNAs, RNAs, proteins, and metabolites) and performing multiple omics measurements on single samples is very attractive, but such studies are challenging due to the fact that the extraction conditions differ according to the molecule type. Here, we adapted an organic solvent-based extraction method that demonstrated broad applicability and robustness, which enabled comprehensive proteomics, metabolomics, and lipidomics analyses from the same sample. ABSTRACT Integrative multi-omics analyses can empower more effective investigation and complete understanding of complex biological systems. Despite recent advances in a range of omics analyses, multi-omic measurements of the same sample are still challenging and current methods have not been well evaluated in terms of reproducibility and broad applicability. Here we adapted a solvent-based method, widely applied for extracting lipids and metabolites, to add proteomics to mass spectrometry-based multi-omics measurements. The metabolite, protein, and lipid extraction (MPLEx) protocol proved to be robust and applicable to a diverse set of sample types, including cell cultures, microbial communities, and tissues. To illustrate the utility of this protocol, an integrative multi-omics analysis was performed using a lung epithelial cell line infected with Middle East respiratory syndrome coronavirus, which showed the impact of this virus on the host glycolytic pathway and also suggested a role for lipids during infection. The MPLEx method is a simple, fast, and robust protocol that can be applied for integrative multi-omic measurements from diverse sample types (e.g., environmental, in vitro, and clinical). IMPORTANCE In systems biology studies, the integration of multiple omics measurements (i.e., genomics, transcriptomics, proteomics, metabolomics, and lipidomics) has been shown to provide a more complete and informative view of biological pathways. Thus, the prospect of extracting different types of molecules (e.g., DNAs, RNAs, proteins, and metabolites) and performing multiple omics measurements on single samples is very attractive, but such studies are challenging due to the fact that the extraction conditions differ according to the molecule type. Here, we adapted an organic solvent-based extraction method that demonstrated broad applicability and robustness, which enabled comprehensive proteomics, metabolomics, and lipidomics analyses from the same sample. Author Video: An author video summary of this article is available.


Environmental Microbiology Reports | 2014

The fungus gardens of leaf-cutter ants undergo a distinct physiological transition during biomass degradation

Eric L. Huang; Frank O. Aylward; Young Mo Kim; Bobbie Jo M Webb-Robertson; Carrie D. Nicora; Zeping Hu; Thomas O. Metz; Mary S. Lipton; Richard D. Smith; Cameron R. Currie; Kristin E. Burnum-Johnson

Leaf-cutter ants are dominant herbivores in ecosystems throughout the Neotropics that feed on fungus gardens cultivated on fresh foliar biomass. Although recent investigations have shed light on how plant biomass is degraded in fungus gardens, the cycling of nutrients that takes place in these specialized microbial ecosystems is still not well understood. Here, using metabolomic and metaproteomic techniques, we examine the dynamics of nutrient turnover in these gardens. Our results reveal that numerous free amino acids and sugars are depleted throughout the process of biomass degradation, indicating that easily accessible nutrients from plant material are readily consumed by microbes in these ecosystems. Accumulation of cellobiose and lignin derivatives near the end of the degradation process is consistent with previous characterization of lignocellulases produced by the fungal cultivar of the ants. Our results also suggest that ureides may be an important source of nitrogen in fungus gardens, especially during nitrogen-limiting conditions. No free arginine was detected in our metabolomic experiments despite evidence that the host ants cannot produce this amino acid, suggesting that biosynthesis of this metabolite may be tightly regulated in fungus gardens. These results provide new insights into microbial community-level processes that underlie this important ant-fungus symbiosis.


Reviews in Analytical Chemistry | 2017

Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry for Enhanced Multidimensional Biological and Environmental Analyses

Xueyun Zheng; Roza Wojcik; Xing Zhang; Yehia M. Ibrahim; Kristin E. Burnum-Johnson; Daniel J. Orton; Matthew E. Monroe; Ronald J. Moore; Richard D. Smith; Erin S. Baker

Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. Though IMS alone is useful, its coupling with mass spectrometry (MS) and front-end separations is extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information available from biological and environmental sample analyses. In fact, multiple disease screening and environmental evaluations have illustrated that the IMS-based multidimensional separations extract information that cannot be acquired with each technique individually. This review highlights three-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography, supercritical fluid chromatography, liquid chromatography, solid-phase extractions, capillary electrophoresis, field asymmetric ion mobility spectrometry, and microfluidic devices. The origination, current state, various applications, and future capabilities of these multidimensional approaches are described in detail to provide insight into their uses and benefits.

Collaboration


Dive into the Kristin E. Burnum-Johnson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew E. Monroe

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Erin S. Baker

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Carrie D. Nicora

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jennifer E. Kyle

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Thomas O. Metz

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ronald J. Moore

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Cameron P. Casey

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Orton

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sudhansu K. Dey

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge