Carrie E. Mahoney
Beth Israel Deaconess Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carrie E. Mahoney.
Endocrinology | 2009
John-Paul Baird; Angela Choe; J.L. Loveland; Janine Beck; Carrie E. Mahoney; Julia Lord; Lindsay A. Grigg
Orexin-A (ORXA) is an orexigenic neuropeptide produced by the lateral hypothalamus that increases food intake when injected into the brain ventricles or forebrain nuclei. We used a licking microstructure analysis to evaluate hindbrain and forebrain ORXA effects in intact and hindbrain-lesioned rats, to identify the motivational and anatomical bases of ORXA hyperphagia. Intact rats with cannulas in the fourth brain ventricle (4V) received vehicle (artificial cerebrospinal fluid) or ORXA (0.1, 0.4, 1, or 10 nm) injections before 90 min access to 0.1 m sucrose. Meal size and frequency were increased in a double-dissociated manner by the 1 and 10 nm doses, respectively. In experiment 2, 4V 1 nm ORXA was applied to rats offered solutions varied in caloric and gustatory intensity (water and 0.1 and 1 m sucrose). ORXA increased meal frequency for all tastants. ORXA increased meal size only for 0.1 m sucrose, by prolonging the meal without affecting early ingestion rate or lick burst size, suggesting that 4V ORXA influenced inhibitory postingestive feedback rather than taste evaluation. In experiment 3, rats with cannulas in the third ventricle (3V) received dorsal medullary lesions centered on the area postrema (APX group) or sham procedures, and licking for water and 0.1 and 1 m sucrose was evaluated after 1 nm 3V ORXA/artificial cerebrospinal fluid injections. The 3V ORXA increased 0.1 m sucrose meal size and meal frequency for all tastants in the sham group, as observed after 4V ORXA in experiment 2. In the APX group, 3V ORXA injections influenced meal frequency, but they no longer increased meal size. However, the APX rats increased meal size for 0.1 m sucrose after food and water deprivation and after 3V angiotensin II injection. They also showed meal size suppression after 3V injection of the melanocortin-3/4 receptor agonist melanotan II (1 nm). These findings suggest that the area postrema and subjacent nucleus of the solitary tract are necessary for increases in consummatory (meal size) but not appetitive (meal frequency) responses to 3V ORXA. The meal size increases may be due to reduced postingestive feedback inhibition induced by ORXA delivered to either the hindbrain or forebrain ventricles.
Medicine and Science in Sports and Exercise | 2014
Jaci L. VanHeest; Carol D. Rodgers; Carrie E. Mahoney; Mary Jane De Souza
INTRODUCTION Competitive female athletes restrict energy intake and increase exercise energy expenditure frequently resulting in ovarian suppression. The purpose of this study was to determine the impact of ovarian suppression and energy deficit on swimming performance (400-m swim velocity). METHODS Menstrual status was determined by circulating estradiol (E2) and progesterone (P4) in ten junior elite female swimmers (15-17 yr). The athletes were categorized as cyclic (CYC) or ovarian-suppressed (OVS). They were evaluated every 2 wk for metabolic hormones, bioenergetic parameters, and sport performance during the 12-wk season. RESULTS CYC and OVS athletes were similar (P > 0.05) in age (CYC = 16.2 ± 1.8 yr, OVS = 17 ± 1.7 yr), body mass index (CYC = 21 ± 0.4 kg·m, OVS = 25 ± 0.8 kg·m), and gynecological age (CYC = 2.6 ± 1.1 yr, OVS = 2.8 ± 1.5 yr). OVS had suppressed P4 (P < 0.001) and E2 (P = 0.002) across the season. Total triiodothyronine (TT3) and insulin-like growth factor (IGF-1) were lower in OVS (TT3: CYC = 1.6 ± 0.2 nmol·L, OVS = 1.4 ± 0.1 nmol·L, P < 0.001; IGF-1: CYC = 243 ± 1 μg·mL, OVS = 214 ± 3 μg·mL P < 0.001) than CYC at week 12. Energy intake (P < 0.001) and energy availability (P < 0.001) were significantly lower in OVS versus CYC. OVS exhibited a 9.8% decline in Δ400-m swim velocity compared with an 8.2% improvement in CYC at week 12. CONCLUSIONS Ovarian steroids (P4 and E2), metabolic hormones (TT3 and IGF-1), and energy status markers (EA and EI) were highly correlated with sport performance. This study illustrates that when exercise training occurs in the presence of ovarian suppression with evidence for energy conservation (i.e., reduced TT3), it is associated with poor sport performance. These data from junior elite female athletes support the need for dietary periodization to help optimize energy intake for appropriate training adaptation and maximal sport performance.
The Journal of Neuroscience | 2017
Daniel Kroeger; Loris L. Ferrari; Gaetan Petit; Carrie E. Mahoney; Patrick M. Fuller; Elda Arrigoni; Thomas E. Scammell
The pedunculopontine tegmental (PPT) nucleus has long been implicated in the regulation of cortical activity and behavioral states, including rapid eye-movement (REM) sleep. For example, electrical stimulation of the PPT region during sleep leads to rapid awakening, whereas lesions of the PPT in cats reduce REM sleep. Though these effects have been linked with the activity of cholinergic PPT neurons, the PPT also includes intermingled glutamatergic and GABAergic cell populations, and the precise roles of cholinergic, glutamatergic, and GABAergic PPT cell groups in regulating cortical activity and behavioral state remain unknown. Using a chemogenetic approach in three Cre-driver mouse lines, we found that selective activation of glutamatergic PPT neurons induced prolonged cortical activation and behavioral wakefulness, whereas inhibition reduced wakefulness and increased non-REM (NREM) sleep. Activation of cholinergic PPT neurons suppressed lower-frequency electroencephalogram rhythms during NREM sleep. Last, activation of GABAergic PPT neurons slightly reduced REM sleep. These findings reveal that glutamatergic, cholinergic, and GABAergic PPT neurons differentially influence cortical activity and sleep/wake states. SIGNIFICANCE STATEMENT More than 40 million Americans suffer from chronic sleep disruption, and the development of effective treatments requires a more detailed understanding of the neuronal mechanisms controlling sleep and arousal. The pedunculopontine tegmental (PPT) nucleus has long been considered a key site for regulating wakefulness and REM sleep. This is mainly because of the cholinergic neurons contained in the PPT nucleus. However, the PPT nucleus also contains glutamatergic and GABAergic neurons that likely contribute to the regulation of cortical activity and sleep–wake states. The chemogenetic experiments in the present study reveal that cholinergic, glutamatergic, and GABAergic PPT neurons each have distinct effects on sleep/wake behavior, improving our understanding of how the PPT nucleus regulates cortical activity and behavioral states.
Journal of Strength and Conditioning Research | 2004
Jaci L. VanHeest; Carrie E. Mahoney; Larry Herr
Open-water swimming (5, 10, and 25 km) has many unique challenges that separate it from other endurance sports, like marathon running and cycling. The characteristics of a successful open-water swimmer are unclear. The purpose of this study was to determine the physical and metabolic characteristics of a group of elite-level open-water swimmers. The open-water swimmers were participating in a 1-week training camp. Anthropometric, metabolic, and blood chemistry assessments were performed on the athletes. The swimmers had a Vo2peak of 5.51 ± 0.96 and 5.06 ± 0.57 ml·kg-1min-1 for males and females, respectively. Their lactate threshold (LT) occurred at a pace equal to 88.75% of peak pace for males and 93.75% for females. These elite open-water swimmers were smaller and lighter than competitive pool swimmers. They possess aerobic metabolic alterations that resulted in enhanced performance in distance swimming. Trainers and coaches should develop dry-land programs that will improve the athletes muscular endurance. Furthermore, programs should be designed to increase the LT velocity as a percentage of peak swimming velocity.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2016
Joel C. Geerling; Minjee Y Kim; Carrie E. Mahoney; Steven B.G. Abbott; Lindsay J Agostinelli; Alastair S. Garfield; Michael J. Krashes; Bradford B. Lowell; Thomas E. Scammell
The parabrachial nucleus is important for thermoregulation because it relays skin temperature information from the spinal cord to the hypothalamus. Prior work in rats localized thermosensory relay neurons to its lateral subdivision (LPB), but the genetic and neurochemical identity of these neurons remains unknown. To determine the identity of LPB thermosensory neurons, we exposed mice to a warm (36°C) or cool (4°C) ambient temperature. Each condition activated neurons in distinct LPB subregions that receive input from the spinal cord. Most c-Fos+ neurons in these LPB subregions expressed the transcription factor marker FoxP2. Consistent with prior evidence that LPB thermosensory relay neurons are glutamatergic, all FoxP2+ neurons in these subregions colocalized with green fluorescent protein (GFP) in reporter mice for Vglut2, but not for Vgat. Prodynorphin (Pdyn)-expressing neurons were identified using a GFP reporter mouse and formed a caudal subset of LPB FoxP2+ neurons, primarily in the dorsal lateral subnucleus (PBdL). Warm exposure activated many FoxP2+ neurons within PBdL. Half of the c-Fos+ neurons in PBdL were Pdyn+, and most of these project into the preoptic area. Cool exposure activated a separate FoxP2+ cluster of neurons in the far-rostral LPB, which we named the rostral-to-external lateral subnucleus (PBreL). These findings improve our understanding of LPB organization and reveal that Pdyn-IRES-Cre mice provide genetic access to warm-activated, FoxP2+ glutamatergic neurons in PBdL, many of which project to the hypothalamus.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010
Carrie E. Mahoney; Daniel Brewer; Mary K. Costello; Judy McKinley Brewer; Eric L. Bittman
To evaluate the contribution of neural pathways to the determination of the circadian oscillator phase in peripheral organs, we assessed lateralization of clock gene expression in Syrian hamsters induced to split rhythms of locomotor activity by exposure to constant light. We measured the ratio of haPer1, haPer2, and haBmal1 mRNA on the high vs. low (H/L) side at 3-h intervals prior to the predicted activity onset (pAO). We also calculated expression on the sides ipsilateral vs. contralateral (I/C) to the side of the suprachiasmatic nucleus (SCN) expressing higher haPer1. The extent of asymmetry in split hamsters varied between specific genes, phases, and organs. Although the magnitude of asymmetry in peripheral organs was never as great as that in the SCN, we observed significantly greater lateralization of clock gene expression in the adrenal medulla and cortex, lung, and skeletal muscle, but not in liver or kidney, of split hamsters than of unsplit controls. We observed fivefold lateralization of expression of the clock-controlled gene, albumin site D-element binding protein (Dbp), in skeletal muscle (H/L: 10.7 +/- 3.7 at 3 h vs. 2.2 +/- 0.3 at 0 h pAO; P = 0.03). Furthermore, tyrosine hydroxylase expression was asymmetrical in the adrenal medulla of split (H/L: 1.9 +/- 0.5 at 0 h) vs. unsplit hamsters (1.2 +/- 0.04; P < 0.05). Consistent with a model of neurally controlled gene expression, we found significant correlations between the phase angle between morning and evening components (psi(me)) and the level of asymmetry (H/L or I/C). Our results indicate that neural pathways contribute to, but cannot completely account for, SCN regulation of the phase of peripheral oscillators.
PLOS ONE | 2013
Carrie E. Mahoney; Judy McKinley Brewer; Eric L. Bittman
Cells of the dorsomedial/lateral hypothalamus (DMH/LH) that produce hypocretin (HCRT) promote arousal in part by activation of cells of the locus coeruleus (LC) which express tyrosine hydroxylase (TH). The suprachiasmatic nucleus (SCN) drives endogenous daily rhythms, including those of sleep and wakefulness. These circadian oscillations are generated by a transcriptional-translational feedback loop in which the Period (Per) genes constitute critical components. This cell-autonomous molecular clock operates not only within the SCN but also in neurons of other brain regions. However, the phenotype of such neurons and the nature of the phase controlling signal from the pacemaker are largely unknown. We used dual fluorescent in situ hybridization to assess clock function in vasopressin, HCRT and TH cells of the SCN, DMH/LH and LC, respectively, of male Syrian hamsters. In the first experiment, we found that Per1 expression in HCRT and TH oscillated in animals held in constant darkness with a peak phase that lagged that in AVP cells of the SCN by several hours. In the second experiment, hamsters induced to split their locomotor rhythms by exposure to constant light had asymmetric Per1 expression within cells of the middle SCN at 6 h before activity onset (AO) and in HCRT cells 9 h before and at AO. We did not observe evidence of lateralization of Per1 expression in the LC. We conclude that the SCN communicates circadian phase to HCRT cells via lateralized neural projections, and suggests that Per1 expression in the LC may be regulated by signals of a global or bilateral nature.
The Journal of Comparative Neurology | 2017
Lindsay J Agostinelli; Loris L. Ferrari; Carrie E. Mahoney; Takatoshi Mochizuki; Bradford B. Lowell; Elda Arrigoni; Thomas E. Scammell
The orexin (hypocretin) neurons play an essential role in promoting arousal, and loss of the orexin neurons results in narcolepsy, a condition characterized by chronic sleepiness and cataplexy. The orexin neurons excite wake‐promoting neurons in the basal forebrain (BF), and a reciprocal projection from the BF back to the orexin neurons may help promote arousal and motivation. The BF contains at least three different cell types (cholinergic, glutamatergic, and γ‐aminobutyric acid (GABA)ergic neurons) across its different regions (medial septum, diagonal band, magnocellular preoptic area, and substantia innominata). Given the neurochemical and anatomical heterogeneity of the BF, we mapped the pattern of BF projections to the orexin neurons across multiple BF regions and neuronal types. We performed conditional anterograde tracing using mice that express Cre recombinase only in neurons producing acetylcholine, glutamate, or GABA. We found that the orexin neurons are heavily apposed by axon terminals of glutamatergic and GABAergic neurons of the substantia innominata (SI) and magnocellular preoptic area, but there was no innervation by the cholinergic neurons. Channelrhodopsin‐assisted circuit mapping (CRACM) demonstrated that glutamatergic SI neurons frequently form functional synapses with the orexin neurons, but, surprisingly, functional synapses from SI GABAergic neurons were rare. Considering their strong reciprocal connections, BF and orexin neurons likely work in concert to promote arousal, motivation, and other behaviors. J. Comp. Neurol. 525:1668–1684, 2017.
The Journal of Neuroscience | 2017
Carrie E. Mahoney; Lindsay J Agostinelli; Jessica N.K. Brooks; Bradford B. Lowell; Thomas E. Scammell
Narcolepsy is characterized by chronic sleepiness and cataplexy—sudden muscle paralysis triggered by strong, positive emotions. This condition is caused by a lack of orexin (hypocretin) signaling, but little is known about the neural mechanisms that mediate cataplexy. The amygdala regulates responses to rewarding stimuli and contains neurons active during cataplexy. In addition, lesions of the amygdala reduce cataplexy. Because GABAergic neurons of the central nucleus of the amygdala (CeA) target brainstem regions known to regulate muscle tone, we hypothesized that these cells promote emotion-triggered cataplexy. We injected adeno-associated viral vectors coding for Cre-dependent DREADDs or a control vector into the CeA of orexin knock-out mice crossed with vGAT-Cre mice, resulting in selective expression of the excitatory hM3 receptor or the inhibitory hM4 receptor in GABAergic neurons of the CeA. We measured sleep/wake behavior and cataplexy after injection of saline or the hM3/hM4 ligand clozapine-N-oxide (CNO) under baseline conditions and under conditions that should elicit positive emotions. In mice expressing hM3, CNO approximately doubled the amount of cataplexy in the first 3 h after dosing under baseline conditions. Rewarding stimuli (chocolate or running wheels) also increased cataplexy, but CNO produced no further increase. In mice expressing hM4, CNO reduced cataplexy in the presence of chocolate or running wheels. These results demonstrate that GABAergic neurons of the CeA are sufficient and necessary for the production of cataplexy in mice, and they likely are a key part of the mechanism through which positive emotions trigger cataplexy. SIGNIFICANCE STATEMENT Cataplexy is one of the major symptoms of narcolepsy, but little is known about how strong, positive emotions trigger these episodes of muscle paralysis. Prior research shows that amygdala neurons are active during cataplexy and cataplexy is reduced by lesions of the amygdala. We found that cataplexy is substantially increased by selective activation of GABAergic neurons in the central nucleus of the amygdala (CeA). We also demonstrate that inhibition of these neurons reduces reward-promoted cataplexy. These results build upon prior work to establish the CeA as a crucial element in the neural mechanisms of cataplexy. These results demonstrate the importance of the CeA in regulating responses to rewarding stimuli, shedding light on the broader neurobiology of emotions and motor control.
Neurobiology of Disease | 2018
Fumito Naganuma; Sathyajit S. Bandaru; Gianna Absi; Carrie E. Mahoney; Thomas E. Scammell; Ramalingam Vetrivelan
The lateral hypothalamus contains neurons producing orexins that promote wakefulness and suppress REM sleep as well as neurons producing melanin-concentrating hormone (MCH) that likely promote REM sleep. Narcolepsy with cataplexy is caused by selective loss of the orexin neurons, and the MCH neurons appear unaffected. As the orexin and MCH systems exert opposing effects on REM sleep, we hypothesized that imbalance in this REM sleep-regulating system due to activity in the MCH neurons may contribute to the striking REM sleep dysfunction characteristic of narcolepsy. To test this hypothesis, we chemogenetically activated the MCH neurons and pharmacologically blocked MCH signaling in a murine model of narcolepsy and studied the effects on sleep-wake behavior and cataplexy. To chemoactivate MCH neurons, we injected an adeno-associated viral vector containing the hM3Dq stimulatory DREADD into the lateral hypothalamus of orexin null mice that also express Cre recombinase in the MCH neurons (MCH-Cre::OX-KO mice) and into control MCH-Cre mice with normal orexin expression. In both lines of mice, activation of MCH neurons by clozapine-N-oxide (CNO) increased rapid eye movement (REM) sleep without altering other states. In mice lacking orexins, activation of the MCH neurons also increased abnormal intrusions of REM sleep manifest as cataplexy and short latency transitions into REM sleep (SLREM). Conversely, a MCH receptor 1 antagonist, SNAP 94847, almost completely eliminated SLREM and cataplexy in OX-KO mice. These findings affirm that MCH neurons promote REM sleep under normal circumstances, and their activity in mice lacking orexins likely triggers abnormal intrusions of REM sleep into non-REM sleep and wake, resulting in the SLREM and cataplexy characteristic of narcolepsy.