Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John-Paul Baird is active.

Publication


Featured researches published by John-Paul Baird.


Endocrinology | 2009

Orexin-A Hyperphagia: Hindbrain Participation in Consummatory Feeding Responses

John-Paul Baird; Angela Choe; J.L. Loveland; Janine Beck; Carrie E. Mahoney; Julia Lord; Lindsay A. Grigg

Orexin-A (ORXA) is an orexigenic neuropeptide produced by the lateral hypothalamus that increases food intake when injected into the brain ventricles or forebrain nuclei. We used a licking microstructure analysis to evaluate hindbrain and forebrain ORXA effects in intact and hindbrain-lesioned rats, to identify the motivational and anatomical bases of ORXA hyperphagia. Intact rats with cannulas in the fourth brain ventricle (4V) received vehicle (artificial cerebrospinal fluid) or ORXA (0.1, 0.4, 1, or 10 nm) injections before 90 min access to 0.1 m sucrose. Meal size and frequency were increased in a double-dissociated manner by the 1 and 10 nm doses, respectively. In experiment 2, 4V 1 nm ORXA was applied to rats offered solutions varied in caloric and gustatory intensity (water and 0.1 and 1 m sucrose). ORXA increased meal frequency for all tastants. ORXA increased meal size only for 0.1 m sucrose, by prolonging the meal without affecting early ingestion rate or lick burst size, suggesting that 4V ORXA influenced inhibitory postingestive feedback rather than taste evaluation. In experiment 3, rats with cannulas in the third ventricle (3V) received dorsal medullary lesions centered on the area postrema (APX group) or sham procedures, and licking for water and 0.1 and 1 m sucrose was evaluated after 1 nm 3V ORXA/artificial cerebrospinal fluid injections. The 3V ORXA increased 0.1 m sucrose meal size and meal frequency for all tastants in the sham group, as observed after 4V ORXA in experiment 2. In the APX group, 3V ORXA injections influenced meal frequency, but they no longer increased meal size. However, the APX rats increased meal size for 0.1 m sucrose after food and water deprivation and after 3V angiotensin II injection. They also showed meal size suppression after 3V injection of the melanocortin-3/4 receptor agonist melanotan II (1 nm). These findings suggest that the area postrema and subjacent nucleus of the solitary tract are necessary for increases in consummatory (meal size) but not appetitive (meal frequency) responses to 3V ORXA. The meal size increases may be due to reduced postingestive feedback inhibition induced by ORXA delivered to either the hindbrain or forebrain ventricles.


Behavioral Neuroscience | 2005

Temporal and qualitative dynamics of conditioned taste aversion processing : Combined generalization testing and licking microstructure analysis

John-Paul Baird; Steven J. St. John; Eric Anh-Nhat Nguyen

The pattern of licking microstructure during various phases of a conditioned taste aversion (CTA) was evaluated. In Experiment 1, rats ingested lithium chloride (LiCl) for 3 trials and were then offered sodium chloride (NaCl) or sucrose on 3 trials. A CTA to LiCl developed and generalized to NaCl but not to sucrose. CTA intake suppression was characterized by reductions in burst size, average ingestion rate, and intraburst lick rate, and increases in brief pauses and burst counts. Compared with previous studies, LiCl licking shifted from a pattern initially matching that for normally accepted NaCl to one matching licking for normally avoided quinine hydrochloride by the end of the 1st acquisition trial. In Experiment 2, a novel paradigm was developed to show that rats expressed CTA generalization within 9 min of their first LiCl access. These results suggest that licking microstructure analysis can be used to assay changes in hedonic evaluation caused by treatments that produce aversive states.


Neuropsychopharmacology | 2014

Glucagon-Like Peptide-1 Receptor Signaling in the Lateral Parabrachial Nucleus Contributes to the Control of Food Intake and Motivation to Feed

Amber L. Alhadeff; John-Paul Baird; Jennifer C Swick; Matthew R. Hayes; Harvey J. Grill

Central glucagon-like peptide-1 receptor (GLP-1R) activation reduces food intake and the motivation to work for food, but the neurons and circuits mediating these effects are not fully understood. Although lateral parabrachial nucleus (lPBN) neurons are implicated in the control of food intake and reward, the specific role of GLP-1R-expressing lPBN neurons is unexplored. Here, neuroanatomical tracing, immunohistochemical, and behavioral/pharmacological techniques are used to test the hypothesis that lPBN neurons contribute to the anorexic effect of central GLP-1R activation. Results indicate that GLP-1-producing neurons in the nucleus tractus solitarius project monosynaptically to the lPBN, providing a potential endogenous mechanism by which lPBN GLP-1R signaling may exert effects on food intake control. Pharmacological activation of GLP-1R in the lPBN reduced food intake, and conversely, antagonism of GLP-1R in the lPBN increased food intake. In addition, lPBN GLP-1R activation reduced the motivation to work for food under a progressive ratio schedule of reinforcement. Taken together, these data establish the lPBN as a novel site of action for GLP-1R-mediated control of food intake and reward.


Behavioral Neuroscience | 2006

Effects of neuropeptide Y on feeding microstructure : Dissociation of appetitive and consummatory actions

John-Paul Baird; Nora Elizabeth Gray; Shannon Glenora Fischer

The effects of intracerebroventricular application of Neuropeptide Y (NPY) on licking microstructure for sucrose, saccharin, and water solutions were evaluated. In Experiment 1, NPY increased meal size for three sucrose concentrations (0.03 M, 0.3 M, and 1.0 M) by increasing licking burst number but not size and by extending meals more than four-fold in duration with a slow, sustained rate of ingestion in late phases of the meal. Results are consistent with the interpretation that NPY suppressed inhibitory postingestive feedback. Experiment 2 supported this conclusion. NPY significantly increased the number of meals initiated for water, 0.1% saccharin, and 1.0 M sucrose solutions, but meal size was only increased for 1.0 M sucrose. Therefore, NPY also increased appetitive feeding behaviors, but its consummatory effects were limited to caloric solutions. The results are discussed with regard to their potential to explain current discrepancies in the literature.


Pharmacology, Biochemistry and Behavior | 2008

Behavioral processes mediating phencyclidine-induced decreases in voluntary sucrose consumption

John-Paul Baird; Sarah M. Turgeon; Aaron Wallman; Virginia Hulick

Prior exposure to phencyclidine (PCP) has been shown to decrease voluntary sucrose consumption in rats, which may indicate reduced reward function. To further characterize the effects of PCP on sucrose consumption, we examined the dose-response relationship between PCP and sucrose consumption, the longevity of the effect, the effects of repeated injections of PCP, variation of the PCP effect across sucrose concentrations, and the effects of PCP on gustatory hedonic responses. A single injection of PCP (2.5-20 mg/kg) dose-dependently suppressed sucrose consumption 20 h post-injection, with significant decreases after 15 and 20 mg/kg PCP. These decreases were sustained three days following withdrawal from PCP. Repeated injections of PCP (7.5 mg/kg bid for 7 days) decreased sucrose consumption 20 h after withdrawal, which returned to baseline on the second day. A single injection of PCP (15 mg/kg) suppressed 0.15 M sucrose more than 1 M sucrose consumption, with no effect on 0.3 M sucrose, suggesting that PCP suppressed intake of moderately rewarding taste stimuli. Finally, a single injection of PCP (15 mg/kg) suppressed brief access (20 s) licking for the majority of concentrations of sucrose solutions offered (0.031 M, 0.062 M, 0.125 M, 0.25 M, 0.5 M, and 1.0 M), while it had no effect on licking for 0.016 M sucrose, water, or for bitter quinine hydrochloride solutions (range: 0.94 mM-30 mM), suggesting that the PCP effect is specific to palatable taste stimuli without disruption of sensitivity to taste quality or intensity. We conclude that PCP produces moderate anhedonia as reflected through a specific decrease in the sustained consumption of moderately palatable sucrose solutions.


Neuropsychopharmacology | 2015

Parabrachial Nucleus Contributions to Glucagon-Like Peptide-1 Receptor Agonist-Induced Hypophagia

Jennifer C Swick; Amber L. Alhadeff; Harvey J. Grill; Paula Urrea; Stephanie M Lee; Hyunsun Roh; John-Paul Baird

Exendin-4 (Ex4), a glucagon-like peptide-1 receptor (GLP-1R) agonist approved to treat type 2 diabetes mellitus, is well known to induce hypophagia in human and animal models. We evaluated the contributions of the hindbrain parabrachial nucleus (PBN) to systemic Ex4-induced hypophagia, as the PBN receives gustatory and visceral afferent relays and descending input from several brain nuclei associated with feeding. Rats with ibotenic-acid lesions targeted to the lateral PBN (PBNx) and sham controls received Ex4 (1 μg/kg) before 24 h home cage chow or 90 min 0.3 M sucrose access tests, and licking microstructure was analyzed to identify components of feeding behavior affected by Ex4. PBN lesion efficacy was confirmed using conditioned taste aversion (CTA) tests. As expected, sham control but not PBNx rats developed a CTA. In sham-lesioned rats, Ex4 reduced chow intake within 4 h of injection and sucrose intake within 90 min. PBNx rats did not show reduced chow or sucrose intake after Ex4 treatment, indicating that the PBN is necessary for Ex4 effects under the conditions tested. In sham-treated rats, Ex4 affected licking microstructure measures associated with hedonic taste evaluation, appetitive behavior, oromotor coordination, and inhibitory postingestive feedback. Licking microstructure responses in PBNx rats after Ex4 treatment were similar to sham-treated rats with the exception of inhibitory postingestive feedback measures. Together, the results suggest that the PBN critically contributes to the hypophagic effects of systemically delivered GLP-1R agonists by enhancing visceral feedback.


Life Sciences | 2009

Tamoxifen and raloxifene produce conditioned taste avoidance in female rats: a microstructural analysis of licking patterns.

Melissa A. Fudge; Martin Kavaliers; John-Paul Baird; Klaus-Peter Ossenkopp

AIMS Estrogen receptor activation has been shown to reduce body weight and produce conditioned taste avoidance (CTA) when estradiol administration is paired with a novel tastant. This study determined if the selective estrogen receptor modulators tamoxifen and raloxifene, which effectively prevent and treat breast cancer, can induce a CTA and alter body weight in ovariectomized (OVX)-female rats. MAIN METHODS During conditioning, OVX-female rats were injected with tamoxifen, raloxifene, 17beta-estradiol or vehicle, or were uninjected, prior to drinking 0.3 M sucrose in a lickometer. Immediately following sucrose access, alterations in locomotor activity and thigmotaxis (anxiety) were assessed in an open field apparatus. Conditioned drug effects on drinking, locomotor activity and anxiety were examined on a separate test day. KEY FINDINGS Our results suggest that both tamoxifen and raloxifene produce CTA that is similar to that produced by estradiol. Both the number and size of bursts of licking were significantly reduced, as well as body weight gain, in OVX-female rats treated with tamoxifen or raloxifene. SIGNIFICANCE The results of the present study suggest that tamoxifen and raloxifene may have the potential to produce CTA in breast cancer patients receiving chemoprevention care.


Hormones and Behavior | 2009

Tamoxifen produces conditioned taste avoidance in male rats: an analysis of microstructural licking patterns and taste reactivity.

Melissa A. Fudge; Martin Kavaliers; John-Paul Baird; Klaus-Peter Ossenkopp

Estrogen receptor activation has been shown to reduce body weight and produce a conditioned reduction in food intake in male rats that is putatively mediated by estradiols suggested aversive effects. Evidence has shown that the selective estrogen receptor modulator tamoxifen used in the prevention and treatment of breast cancer may also produce changes in food intake and body weight, which are known to impact cancer development and survival. The purpose of the present study was to examine whether tamoxifen produces a conditioned reduction in intake similar to estradiol by producing a conditioned aversion. A one bottle lickometer test was used to examine conditioned changes in sucrose drinking, while the taste reactivity test was used to measure rejection reactions, which serve to index aversion in rats. A backward conditioning procedure that consisted of 3 conditioning days and one vehicle test day was used to examine conditioned changes in 0.3 M sucrose intake and taste reactivity. Our results show that tamoxifen produced a conditioned reduction in sucrose drinking in a one bottle fluid intake test that was similar to the effects produced by estradiol (positive control); however, no active rejection reactions were produced by either tamoxifen (1 and 10 mg/kg) or estradiol. The present results suggest that tamoxifen, at the doses used in the present study, acts as an estrogen receptor agonist to regulate food intake and that the conditioned reduction in intake produced by tamoxifen and estradiol reflects conditioned taste avoidance rather than conditioned taste aversion.


Chemical Senses | 2012

Multiple Processes Underlie Benzodiazepine-Mediated Increases in the Consumption of Accepted and Avoided Stimuli

David W. Pittman; M. R. McGinnis; L. M. Richardson; E. J. Miller; M. L. Alimohamed; John-Paul Baird

Hyperphagia is a reported side effect of anxiolytic benzodiazepines such as chlordiazepoxide (CDP). Prior research has focused primarily on the ingestive responses to sweet or solid foods. We examined CDP effects on licking for normally accepted and avoided taste solutions across a range of concentrations. The effect of CDP (10 mg/kg) versus saline on the licking patterns of water-restricted rats for water and 3 concentrations of sucrose, saccharin, NaCl, monosodium glutamate (MSG), citric acid, and quinine (Q-HCl) solutions was evaluated during 1 h tests. CDP increased meal size for all tastants except citric acid. Analysis of licking microstructure revealed 3 dissociable effects of CDP. CDP affected oromotor coordination as indicated by a uniform increase in the modal interlick interval for all stimuli. CDP increased meal size as indicated by shorter pauses during consumption of water, MSG, and weaker saccharin concentrations, and by fewer long interlick intervals (250-2000 ms) for normally avoided tastants. CDP also increased meal size by increasing burst size, burst duration, and the initial rate of licking for most solutions, suggesting increased hedonic taste evaluation. CDP did not affect variables associated with postingestive feedback such as meal duration or number of bursts, and the results also suggest that CDP did not enhance the perceived taste intensity. We hypothesize that the reduction of pause duration is consistent with an increased motivation to sample the stimulus that synergizes with changes in taste-mediated responsiveness to some but not all stimuli to yield increases in the consumption of both normally accepted and avoided taste stimuli.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Anatomical dissociation of melanocortin receptor agonist effects on taste- and gut-sensitive feeding processes

John-Paul Baird; Mariana Palacios; Michael LaRiviere; Lindsay A. Grigg; Christopher Lim; Eduardo Matute; Julia Lord

Injections of the melanocortin 3/4 receptor (MCR) agonist melanotan II (MTII) to a variety of brain structures produces anorexia, suggesting distributed brain MCR control of food intake. We performed a detailed analysis of feeding behavior (licking microstructure analysis) after a range of MTII doses (0.005 nM to 1 nM) was targeted to the forebrain (third ventricle, 3V) or hindbrain (fourth ventricle, 4V) regions. MTII (0.1 nM and 1 nM) delivered to the 3V or 4V significantly reduced 0.8 M sucrose intake. The anorexia was mediated by reductions in the number of licking bursts in the meal, intrameal ingestion rate, and meal duration; these measures have been associated with postingestive feedback inhibition of feeding. Anorexia after 3V but not 4V MTII injection was also associated with a reduced rate of licking in the first minute (initial lick rate) and reduced mean duration of licking bursts; these measures have been associated with taste evaluation. MTII effects on taste evaluation were further explored: In experiment 2, 3V MTII (1 nM) significantly reduced intake of noncaloric 4 mM saccharin and 0.1 M and 1 M sucrose solutions, but not water. The anorexia was again associated with reduced number of licking bursts, ingestion rate, meal duration, initial lick rate, and mean burst duration. In experiments 3 and 4, brief access (20 s) licking responses for sweet sucrose (0.015 M to 0.25 M) and bitter quinine hydrochloride (0.01 mM to 1 mM) solutions were evaluated. Licking responses for sucrose were suppressed, whereas those for quinine solutions were increased after 3V MTII, but not after 4V MTII injections (0.1 nM and 1 nM). The results suggest that multiple brain MCR sites influence sensitivity to visceral feedback, whereas forebrain MCR stimulation is necessary to influence taste responsiveness, possibly through attenuation of the perceived intensity of taste stimuli.

Collaboration


Dive into the John-Paul Baird's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael G. Tordoff

West Chester University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Stuart A. McCaughey

Monell Chemical Senses Center

View shared research outputs
Top Co-Authors

Avatar

Carrie E. Mahoney

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Harvey J. Grill

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amber L. Alhadeff

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge