Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carrie J. Heppelmann is active.

Publication


Featured researches published by Carrie J. Heppelmann.


Journal of Clinical Investigation | 1998

The expression of Fas Ligand by macrophages and its upregulation by human immunodeficiency virus infection.

David H. Dockrell; Andrew D. Badley; Jorge S. Villacian; Carrie J. Heppelmann; Alicia Algeciras; Steven C. Ziesmer; Hideo Yagita; David H. Lynch; Patrick C. Roche; Paul J. Leibson; Carlos V. Paya

Fas/Fas Ligand (FasL) interactions play a significant role in peripheral T lymphocyte homeostasis and in certain pathological states characterized by T cell depletion. In this study, we demonstrate that antigen-presenting cells such as monocyte-derived human macrophages (MDM) but not monocyte-derived dendritic cells express basal levels of FasL. HIV infection of MDM increases FasL protein expression independent of posttranslational mechanisms, thus highlighting the virus-induced transcriptional upregulation of FasL. The in vitro relevance of these observations is confirmed in human lymphoid tissue. FasL protein expression is constitutive and restricted to tissue macrophages and not dendritic cells. Moreover, a significant increase in macrophage-associated FasL is observed in lymphoid tissue from HIV (+) individuals (P < 0.001), which is further supported by increased levels of FasL mRNA using in situ hybridization. The degree of FasL protein expression in vivo correlates with the degree of tissue apoptosis (r = 0.761, P < 0. 001), which is significantly increased in tissue from HIV-infected patients (P < 0.001). These results identify human tissue macrophages as a relevant source for FasL expression in vitro and in vivo and highlight the potential role of FasL expression in the immunopathogenesis of HIV infection.


Journal of Clinical Investigation | 2001

Chemokine-receptor activation by env determines the mechanism of death in HIV-infected and uninfected T lymphocytes

Stacey R. Vlahakis; Alicia Algeciras-Schimnich; German Bou; Carrie J. Heppelmann; Angelina Villasis-Keever; Ronald G. Collman; Carlos V. Paya

There is considerable confusion concerning the mechanism of lymphocyte death during HIV infection. During the course of HIV infection, M-tropic viruses (R5) that use CCR5 chemokine coreceptors frequently evolve to T-tropic viruses (X4) that use CXCR4 receptors. In this study we show that activation of the CD4 or CCR5 receptor by R5 HIVenv causes a caspase 8-dependent death of both uninfected and infected CD4 T cells. In contrast, CXCR4 activation by X4 HIVenv induces a caspase-independent death of both uninfected CD4 and CD8 T cells and infected CD4 cells. These results suggest that activation of the chemokine receptor by HIVenv determines the mechanism of death for both infected and uninfected T lymphocytes.


Journal of Biological Chemistry | 1999

Constitutive Fas Ligand Gene Transcription in Sertoli Cells Is Regulated By Sp1

Rebecca F. McClure; Carrie J. Heppelmann; Carlos V. Paya

The transcriptional regulation of the Fas ligand (FasL) gene in Sertoli cells was investigated, as these cells are known to have constitutive expression of FasL and hence maintain an “immune privileged” environment within the testicle. Using the Sertoli cell line TM4, it was demonstrated that a gene segment of the 5′-untranslated region located between −318 and −237 relative to the translation start site is required for constitutive FasL transcription. Deletion and mutation analysis demonstrate that an Sp1 rather than an NFAT or NFKB-like DNA binding motif present within this region is necessary and sufficient for constitutive FasL gene transcription. Nuclear extracts of Sertoli cells contain Sp1 and Sp3 that specifically binds to the Sp1 motif present in the FasL gene, and overexpression of Sp1 but not Sp3 leads to a further increase of transcription from the FasL promoter-enhancer region. The data presented demonstrates that constitutive FasL gene transcription in Sertoli cells is regulated by Sp1. In addition, it is shown that basal FasL expression in Jurkat T cells is also controlled by Sp1 and this is in contrast to induced FasL expression, which is NFAT-dependent.


AIDS | 2002

CCR5 mediates Fas- and caspase-8 dependent apoptosis of both uninfected and HIV infected primary human CD4 T cells.

Alicia Algeciras-Schimnich; Stacey R. Vlahakis; Angelina Villasis-Keever; Timothy S. Gomez; Carrie J. Heppelmann; German Bou; Carlos V. Paya

DesignHIV Env interaction with the corresponding chemokine receptor dictates the molecular mechanism of death of both HIV-infected and uninfected primary CD4 T cells. CXCR4/T tropic HIV virus (X4) triggers CD4 T cell death through a caspase independent mechanism , whereas CCR5/M tropic HIV virus (R5) HIV triggers a caspase dependent death. In the present study, we have investigated the pathway whereby R5 Env–CR5 interactions lead to a caspase dependent cell death. MethodsCD4 T cells were infected with X4 or R5 HIV strains, or were mock infected. After infection, cells were treated with caspase inhibitors or decoys of death receptor signaling pathways and cell viability was analyzed. The role of R5 HIV Env in induction of cell death of uninfected T cells was analyzed by co-culturing uninfected CD4 T cells with R5 Env expressing cells in the absence or presence of various inhibitors of death receptor signaling. ResultsInfection of CD4 T cells with R5, but not with X4 HIV strains results in the activation of caspase-8 and cell death that is reversed by a decoy of the Fas receptor. Isolated activation of CCR5 by membrane-bound, or soluble R5 Env causes a Fas- and caspase-8 dependent death also of uninfected CD4 T cells. Additional studies demonstrate that isolated CCR5 activation by R5 Env leads to both de novo expression of FasL and induction of susceptibility to Fas-mediated apoptosis in resting primary CD4 T cells. ConclusionsThese results ascribe to CCR5 a novel role in activating the Fas pathway and caspase-8 as well as triggering FasL production when activated by R5 Env, ultimately causing CD4 T cell death.


Journal of Proteome Research | 2011

Relative Quantification: Characterization of bias, variability and fold changes in mass spectrometry data from iTRAQ labeled peptides

Douglas W. Mahoney; Terry M. Therneau; Carrie J. Heppelmann; LeeAnn Higgins; Linda M. Benson; Roman M. Zenka; Pratik Jagtap; Gary L. Nelsestuen; H. Robert Bergen; Ann L. Oberg

Shotgun proteomics via mass spectrometry (MS) is a powerful technology for biomarker discovery that has the potential to lead to noninvasive disease screening mechanisms. Successful application of MS-based proteomics technologies for biomarker discovery requires accurate expectations of bias, reproducibility, variance, and the true detectable differences in platforms chosen for analyses. Characterization of the variability inherent in MS assays is vital and should affect interpretation of measurements of observed differences in biological samples. Here we describe observed biases, variance structure, and the ability to detect known differences in spike-in data sets for which true relative abundance among defined samples were known and were subsequently measured with the iTRAQ technology on two MS platforms. Global biases were observed within these data sets. Measured variability was a function of mean abundance. Fold changes were biased toward the null and variance of a fold change was a function of protein mass and abundance. The information presented herein will be valuable for experimental design and analysis of the resulting data.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2015

Differential Effect of Endurance Training on Mitochondrial Protein Damage, Degradation, and Acetylation in the Context of Aging

Matthew L. Johnson; Brian A. Irving; Ian R. Lanza; Mikkel H. Vendelbo; Adam R. Konopka; Matthew M. Robinson; Gregory C. Henderson; Katherine A. Klaus; Dawn M. Morse; Carrie J. Heppelmann; H. Robert Bergen; Surendra Dasari; Jill M. Schimke; Daniel R. Jakaitis; K. Sreekumaran Nair

Acute aerobic exercise increases reactive oxygen species and could potentially damage proteins, but exercise training (ET) enhances mitochondrial respiration irrespective of age. Here, we report a differential impact of ET on protein quality in young and older participants. Using mass spectrometry we measured oxidative damage to skeletal muscle proteins before and after 8 weeks of ET and find that young but not older participants reduced oxidative damage to both total skeletal muscle and mitochondrial proteins. Young participants showed higher total and mitochondrial derived semitryptic peptides and 26S proteasome activity indicating increased protein degradation. ET however, increased the activity of the endogenous antioxidants in older participants. ET also increased skeletal muscle content of the mitochondrial deacetylase SIRT3 in both groups. A reduction in the acetylation of isocitrate dehydrogenase 2 was observed following ET that may counteract the effect of acute oxidative stress. In conclusion aging is associated with an inability to improve skeletal muscle and mitochondrial protein quality in response to ET by increasing degradation of damaged proteins. ET does however increase muscle and mitochondrial antioxidant capacity in older individuals, which provides increased buffering from the acute oxidative effects of exercise.


Obesity | 2015

Inflammation and the depot-specific secretome of human preadipocytes

Yi Zhu; Tamara Tchkonia; Michael B. Stout; Nino Giorgadze; Libing Wang; Peter W. Li; Carrie J. Heppelmann; Anne Bouloumié; Michael D. Jensen; H. Robert Bergen; James L. Kirkland

Visceral white adipose tissue (WAT) expansion and macrophage accumulation are associated with metabolic dysfunction. Visceral WAT typically shows greater macrophage infiltration. Preadipocytes show varying proinflammatory expression profiles among WAT depots. The objective was to examine the secretomes and chemoattractive properties of preadipocytes from visceral and subcutaneous WAT.


Cancer Immunology, Immunotherapy | 2005

Lack of effective T-lymphocyte response to the PAX3/FKHR translocation area in alveolar rhabdomyosarcoma.

David A. Rodeberg; Rebecca A. Nuss; Carrie J. Heppelmann; Esteban Celis

Purpose: Alveolar rhabdomyosarcoma (ARMS) frequently contains the fusion transcription factor PAX3/FKHR. Therefore, clinical studies have been initiated to utilize the PAX3/FKHR translocation point area as a peptide vaccine against ARMS. Our study was directed at identifying antigenic T-lymphocyte epitopes at the PAX3/FKHR translocation point area. Experimental design: The peptide sequence surrounding the PAX3/FKHR translocation point was evaluated by MHC binding algorithms for potential T-lymphocyte antigenic epitopes (class I molecules HLA-A1, -A2 and -A3; class II molecules HLA-DR1, -DR4 and -DR7). Using in vitro techniques, dendritic cells loaded with PAX3/FKHR peptides were used to stimulate naïve T-lymphocytes. T-lymphocyte activity was then evaluated by 51Cr release and 3H-thymidine uptake assays. Results: Only one HLA-A3-restricted epitope was predicted by the algorithms. The peptide was prepared and tested for its ability to stimulate naïve cytotoxic T-lymphocytes (CTLs). Unfortunately, the peptide was unsuccessful at stimulating naïve CTL. However, induction of naïve helper T-lymphocytes (HTL) to recognize and respond to the PAX3/FKHR translocation peptide was successful. Yet, this HTL peptide activity did not translate into recognition of PAX3/FKHR-containing ARMS tumor cells. Conclusions: It appears that the fusion area of PAX3/FKHR may not be a good source of antigenic anti-tumor peptide epitopes. These results raise serious concerns about the success and applicability of future peptide-based vaccine immunotherapy directed at the PAX3/FKHR translocation point.


Diabetes | 2016

Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice

Piotr Zabielski; Ian R. Lanza; Srinivas Gopala; Carrie J. Heppelmann; H. Robert Bergen; Surendra Dasari; K. Sreekumaran Nair

Insulin plays pivotal role in cellular fuel metabolism in skeletal muscle. Despite being the primary site of energy metabolism, the underlying mechanism on how insulin deficiency deranges skeletal muscle mitochondrial physiology remains to be fully understood. Here we report an important link between altered skeletal muscle proteome homeostasis and mitochondrial physiology during insulin deficiency. Deprivation of insulin in streptozotocin-induced diabetic mice decreased mitochondrial ATP production, reduced coupling and phosphorylation efficiency, and increased oxidant emission in skeletal muscle. Proteomic survey revealed that the mitochondrial derangements during insulin deficiency were related to increased mitochondrial protein degradation and decreased protein synthesis, resulting in reduced abundance of proteins involved in mitochondrial respiration and β-oxidation. However, a paradoxical upregulation of proteins involved in cellular uptake of fatty acids triggered an accumulation of incomplete fatty acid oxidation products in skeletal muscle. These data implicate a mismatch of β-oxidation and fatty acid uptake as a mechanism leading to increased oxidative stress in diabetes. This notion was supported by elevated oxidative stress in cultured myotubes exposed to palmitate in the presence of a β-oxidation inhibitor. Together, these results indicate that insulin deficiency alters the balance of proteins involved in fatty acid transport and oxidation in skeletal muscle, leading to impaired mitochondrial function and increased oxidative stress.


Journal of Proteome Research | 2017

Label-Free Neuroproteomics of the Hippocampal-Accumbal Circuit Reveals Deficits in Neurotransmitter and Neuropeptide Signaling in Mice Lacking Ethanol-Sensitive Adenosine Transporter

Alfredo Oliveros; Phillip Starski; Daniel Lindberg; Sun Choi; Carrie J. Heppelmann; Surendra Dasari; Doo Sup Choi

The neural circuit of the dorsal hippocampus (dHip) and nucleus accumbens (NAc) contributes to cue-induced learning and addictive behaviors, as demonstrated by the escalation of ethanol-seeking behaviors observed following deletion of the adenosine equilibrative nucleoside transporter 1 (ENT1-/-) in mice. Here we perform quantitative LC-MS/MS neuroproteomics in the dHip and NAc of ENT1-/- mice. Using Ingenuity Pathway Analysis, we identified proteins associated with increased long-term potentiation, ARP2/3-mediated actin cytoskeleton signaling and protein expression patterns suggesting deficits in glutamate degradation, GABAergic signaling, as well as significant changes in bioenergetics and energy homeostasis (oxidative phosphorylation, TCA cycle, and glycolysis). These pathways are consistent with previously reported behavioral and biochemical phenotypes that typify mice lacking ENT1. Moreover, we validated decreased expression of the SNARE complex protein VAMP1 (synaptobrevin-1) in the dHip as well as decreased expression of pro-dynorphin (PDYN), neuroendocrine convertase (PCSK1), and Leu-Enkephalin (dynorphin-A) in the NAc. Taken together, our proteomic approach provides novel pathways indicating that ENT1-regulated signaling is essential for neurotransmitter release and neuropeptide processing, both of which underlie learning and reward-seeking behaviors.

Collaboration


Dive into the Carrie J. Heppelmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. Muddiman

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge