H. Robert Bergen
Mayo Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by H. Robert Bergen.
Blood | 2009
Julie A. Vrana; Jeffrey D. Gamez; Benjamin J. Madden; Jason D. Theis; H. Robert Bergen; Ahmet Dogan
The clinical management of amyloidosis is based on the treatment of the underlying etiology, and accurate identification of the protein causing the amyloidosis is of paramount importance. Current methods used for typing of amyloidosis such as immunohistochemistry have low specificity and sensitivity. In this study, we report the development of a highly specific and sensitive novel test for the typing of amyloidosis in routine clinical biopsy specimens. Our approach combines specific sampling by laser microdissection (LMD) and analytical power of tandem mass spectrometry (MS)-based proteomic analysis. We studied 50 cases of amyloidosis that were well-characterized by gold standard clinicopathologic criteria (training set) and an independent validation set comprising 41 cases of cardiac amyloidosis. By use of LMD/MS, we identified the amyloid type with 100% specificity and sensitivity in the training set and with 98% in validation set. Use of the LMD/MS method will enhance our ability to type amyloidosis accurately in clinical biopsy specimens.
Kidney International | 2009
Sanjeev Sethi; Jeffrey D. Gamez; Julie A. Vrana; Jason D. Theis; H. Robert Bergen; Peter F. Zipfel; Ahmet Dogan; Richard J.H. Smith
Dense Deposit Disease (DDD), or membranoproliferative glomerulonephritis type II, is a rare renal disease characterized by dense deposits in the mesangium and along the glomerular basement membranes that can be seen by electron microscopy. Although these deposits contain complement factor C3, as determined by immunofluorescence microscopy, their precise composition remains unknown. To address this question, we used mass spectrometry to identify the proteins in laser microdissected glomeruli isolated from paraffin-embedded tissue of eight confirmed cases of DDD. Compared to glomeruli from five control patients, we found that all of the glomeruli from patients with DDD contain components of the alternative pathway and terminal complement complex. Factor C9 was uniformly present as well as the two fluid-phase regulators of terminal complement complex clusterin and vitronectin. In contrast, in nine patients with immune complex-mediated membranoproliferative glomerulonephritis, glomerular samples contained mainly immunoglobulins and complement factors C3 and C4. Our study shows that in addition to fluid-phase dysregulation of the alternative pathway, soluble components of the terminal complement complex contribute to glomerular lesions found in DDD.
Journal of Proteome Research | 2008
Ann L. Oberg; Douglas W. Mahoney; Jeanette E. Eckel-Passow; Christopher Malone; Russell D. Wolfinger; Elizabeth G. Hill; Leslie T. Cooper; Oyere K. Onuma; Craig Spiro; Terry M. Therneau; H. Robert Bergen
Statistical tools enable unified analysis of data from multiple global proteomic experiments, producing unbiased estimates of normalization terms despite the missing data problem inherent in these studies. The modeling approach, implementation, and useful visualization tools are demonstrated via a case study of complex biological samples assessed using the iTRAQ relative labeling protocol.
PLOS Genetics | 2009
Jae Won Choi; Shari L. Sutor; Lonn D. Lindquist; Glenda L. Evans; Benjamin J. Madden; H. Robert Bergen; Theresa E. Hefferan; Michael J. Yaszemski; Richard J. Bram
Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB–deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB–deficient cells and tissues from CypB–knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone.
Laboratory Investigation | 2008
Fausto J. Rodriguez; Jeffrey D. Gamez; Julie A. Vrana; Jason D. Theis; Caterina Giannini; Bernd W. Scheithauer; Joseph E. Parisi; Claudia F. Lucchinetti; William W. Pendlebury; H. Robert Bergen; Ahmet Dogan
Proteinaceous deposits are occasionally encountered in surgically obtained biopsies of the nervous system. Some of these are amyloidomas, although the precise nature of other cases remains uncertain. We studied 13 cases of proteinaceous aggregates in clinical specimens of the nervous system. Proteins contained within laser microdissected areas of interest were identified from tryptic peptide sequences by liquid chromatography–electrospray tandem mass spectrometry (LC-MS/MS). Immunohistochemical studies for immunoglobulin heavy and light chains and amyloidogenic proteins were performed in all cases. Histologically, the cases were classified into three groups: ‘proteinaceous deposit not otherwise specified’ (PDNOS) (n=6), amyloidoma (n=5), or ‘intracellular crystals’ (n=2). LC-MS/MS demonstrated the presence of λ, but not κ, light chain as well as serum amyloid P in all amyloidomas. λ-Light-chain immunostaining was noted in amyloid (n=5), although demonstrable monotypic lymphoplasmacytic cells were seen in only one case. Conversely, in PDNOS κ, but not λ, was evident in five cases, both light chains being present in a single case. In three cases of PDNOS, a low-grade B-cell lymphoma consistent with marginal zone lymphoma was present in the brain specimen (n=2) or spleen (n=1). Lastly, in the ‘intracellular crystals’ group, the crystals were present within CD68+ macrophages in one case wherein κ-light chain was found by LC-MS/MS only; the pathology was consistent with crystal-storing histiocytosis. In the second case, the crystals contained immunoglobulin G within CD138+ plasma cells. Our results show that proteinaceous deposits in the nervous system contain immunoglobulin components and LC-MS/MS accurately identifies the content of these deposits in clinical biopsy specimens. LC-MS/MS represents a novel application for characterization of these deposits and is of diagnostic utility in addition to standard immunohistochemical analyses.
Disease Markers | 2004
H. Robert Bergen; George Vasmatzis; William A. Cliby; Kenneth L. Johnson; Ann L. Oberg; David C. Muddiman
Treatment of cancer patients is greatly facilitated by detection of the cancer prior to metastasis. One of the obstacles to early cancer detection is the lack of availability of biomarkers with sufficient specificity. With modern differential proteomic techniques, the potential exists to identify high specificity cancer biomarkers. We have delineated a set of protocols for the isolation and identification of serum biomarkers for ovarian cancer that exist in the low molecular weight serum fraction. After isolation of the low molecular weight fraction by ultrafiltration, the potential biomarkers are separated by reversed phase nano liquid chromatography. Detection via TOF or FT-ICR yields a data set for each sample. We compared stage III/IV ovarian cancer serum with postmenopausal age-matched controls. Using bioinformatics tools developed at Mayo, we normalized each sample for intensity and chromatographic alignment. Normalized data sets are subsequently compared and potential biomarkers identified. Several candidate biomarkers were found. One of these contains the sequence of fibrinopeptide-A known to be elevated in many types of cancer including ovarian cancer. The protocols utilized will be examined and would be applicable to a wide variety of cancers or disease states.
JAMA Neurology | 2011
Christopher J. Klein; Julie A. Vrana; Jason D. Theis; Peter James Dyck; P. James B. Dyck; Robert J. Spinner; Michelle L. Mauermann; H. Robert Bergen; Steven R. Zeldenrust; Ahmet Dogan
OBJECTIVE To determine the specific type of amyloid from nerve biopsies using laser microdissection (LMD) and mass spectrometric (MS)-based proteomic analysis. DESIGN, SETTING, AND PATIENTS Twenty-one nerve biopsy specimens (17 sural, 3 sciatic, and 1 root amyloidoma) infiltrated by amyloid were studied. Immunohistochemical subtyping was unable to determine the specific amyloid type for these 21 cases, but the clinical diagnosis was made based on additional testing. Clinical diagnosis was made through evaluation of serum monoclonal proteins, biopsy of bone marrow for acquired monoclonal immunoglobulin light chain amyloidosis, and kindred evaluations with DNA sequencing of transthyretin (TTR) and gelsolin (GSN) genes. Our study included 8 cases of acquired monoclonal immunoglobulin light chain amyloidosis, 11 cases of transthyretin amyloidosis (3 with the Val30Met mutation, 2 with the Val32Ala mutation, 2 with the Thr60Ala mutation, 1 with the Ala109Ser mutation, 1 with the Phe64Leu mutation, 1 with the Ala97Ser mutation, and 1 not sequenced), and 2 cases of gelsolin amyloidosis (1 with the Asp187Asn mutation and 1 not sequenced). One patient with transthyretin amyloidosis and 1 patient with gelsolin amyloidosis with no specific mutation identified were diagnosed based on genetic confirmation in their first-degree relative. Congophilic proteins in the tissues of these 21 cases underwent LMD, were digested into tryptic peptides, and were analyzed using liquid chromatography electrospray tandem MS. Identified proteins were reviewed using bioinformatics tools with interpreters blinded to clinical information. MAIN OUTCOME MEASURE Specific amyloid type was ascertained by LMD tandem MS and compared with clinical diagnosis. RESULTS Specific types of amyloid were accurately detected by LMD/MS in all cases (8 cases of acquired monoclonal immunoglobulin light chain amyloidosis, 2 cases of gelsolin amyloidosis, and 11 cases of transthyretin amyloidosis). Incidental serum monoclonal proteins did not interfere with detection of transthyretin amyloidosis in 2 patients. Additionally, specific TTR mutations were identified in 10 cases by LMD/MS. Serum amyloid P-component and apolipoprotein E proteins were commonly found among all cases. CONCLUSIONS Proteomic analysis of nerve tissue using LMD/MS distinguishes specific types of amyloid independent of clinical information. This new proteomic approach will enhance both diagnostic and research efforts in amyloidosis and other neurologic diseases.
Journal of Biological Chemistry | 2007
Yong-Yeon Cho; Ke Yao; Ann M. Bode; H. Robert Bergen; Benjamin J. Madden; Sang Muk Oh; Svetlana Ermakova; Bong Seok Kang; Hong Seok Choi; Jung-Hyun Shim; Zigang Dong
RSK2, an ERK downstream kinase, is a novel mediator of skeletal muscle cell differentiation through its regulation of NFAT3 activity. We found that the N-terminal (amino acids (aa) 1-68) and C-terminal (aa 416-674) kinase domains of RSK2 directly interacted with nuclear localization signal 1, the Ser/Pro repeat, and the polyproline domains (aa 261-365) of NFAT3. Upon A23187 stimulation, RSK2 induced nuclear localization of NFAT3. RSK2 phosphorylated NFAT3 in vitro (Km = 3.559 μm), and activation of NFAT3 by RSK2 enhanced the promoter activity of NFAT3 downstream target genes in vivo. Furthermore, nuclear accumulation of NFAT3 was attenuated markedly in RSK2-/- cells compared with wild-type RSK2+/+ cells. Notably, RSK2 and NFAT3 induced a significant differentiation of C2C12 myoblasts to multinucleated myotubes. Multinucleated myotube differentiation was inhibited by small interfering RNA against RSK2, ERK1/2, or NFAT3. These results demonstrate that RSK2 is an important kinase for NFAT3 in mediating myotube differentiation.
Cell Metabolism | 2016
Marissa J. Schafer; Elizabeth J. Atkinson; Patrick M. Vanderboom; Brian R. Kotajarvi; Thomas A. White; Matthew M. Moore; Charles J. Bruce; Kevin L. Greason; Rakesh M. Suri; Sundeep Khosla; Jordan D. Miller; H. Robert Bergen; Nathan K. LeBrasseur
Growth and differentiation factor 11 (GDF11) is a transforming growth factor β superfamily member with a controversial role in aging processes. We have developed a highly specific LC-MS/MS assay to quantify GDF11, resolved from its homolog, myostatin (MSTN), based on unique amino acid sequence features. Here, we demonstrate that MSTN, but not GDF11, declines in healthy men throughout aging. Neither GDF11 nor MSTN levels differ as a function of age in healthy women. In an independent cohort of older adults with severe aortic stenosis, we show that individuals with higher GDF11 were more likely to be frail and have diabetes or prior cardiac conditions. Following valve replacement surgery, higher GDF11 at surgical baseline was associated with rehospitalization and multiple adverse events. Cumulatively, our results show that GDF11 levels do not decline throughout aging but are associated with comorbidity, frailty, and greater operative risk in older adults with cardiovascular disease.
Journal of Proteome Research | 2011
Douglas W. Mahoney; Terry M. Therneau; Carrie J. Heppelmann; LeeAnn Higgins; Linda M. Benson; Roman M. Zenka; Pratik Jagtap; Gary L. Nelsestuen; H. Robert Bergen; Ann L. Oberg
Shotgun proteomics via mass spectrometry (MS) is a powerful technology for biomarker discovery that has the potential to lead to noninvasive disease screening mechanisms. Successful application of MS-based proteomics technologies for biomarker discovery requires accurate expectations of bias, reproducibility, variance, and the true detectable differences in platforms chosen for analyses. Characterization of the variability inherent in MS assays is vital and should affect interpretation of measurements of observed differences in biological samples. Here we describe observed biases, variance structure, and the ability to detect known differences in spike-in data sets for which true relative abundance among defined samples were known and were subsequently measured with the iTRAQ technology on two MS platforms. Global biases were observed within these data sets. Measured variability was a function of mean abundance. Fold changes were biased toward the null and variance of a fold change was a function of protein mass and abundance. The information presented herein will be valuable for experimental design and analysis of the resulting data.