Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carrie R. McDonald is active.

Publication


Featured researches published by Carrie R. McDonald.


Neurology | 2009

Regional rates of neocortical atrophy from normal aging to early Alzheimer disease

Carrie R. McDonald; Linda K. McEvoy; Lusineh Gharapetian; Christine Fennema-Notestine; Donald J. Hagler; Dominic Holland; Alain K. Koyama; James B. Brewer; A.M. Dale

Objective: To evaluate the spatial pattern and regional rates of neocortical atrophy from normal aging to early Alzheimer disease (AD). Methods: Longitudinal MRI data were analyzed using high-throughput image analysis procedures for 472 individuals diagnosed as normal, mild cognitive impairment (MCI), or AD. Participants were divided into 4 groups based on Clinical Dementia Rating Sum of Boxes score (CDR-SB). Annual atrophy rates were derived by calculating percent cortical volume loss between baseline and 12-month scans. Repeated-measures analyses of covariance were used to evaluate group differences in atrophy rates across regions as a function of impairment. Planned comparisons were used to evaluate the change in atrophy rates across levels of disease severity. Results: In patients with MCI–CDR-SB 0.5–1, annual atrophy rates were greatest in medial temporal, middle and inferior lateral temporal, inferior parietal, and posterior cingulate. With increased impairment (MCI–CDR-SB 1.5–2.5), atrophy spread to parietal, frontal, and lateral occipital cortex, followed by anterior cingulate cortex. Analysis of regional trajectories revealed increasing rates of atrophy across all neocortical regions with clinical impairment. However, increases in atrophy rates were greater in early disease within medial temporal cortex, whereas increases in atrophy rates were greater at later stages in prefrontal, parietal, posterior temporal, parietal, and cingulate cortex. Conclusions: Atrophy is not uniform across regions, nor does it follow a linear trajectory. Knowledge of the spatial pattern and rate of decline across the spectrum from normal aging to Alzheimer disease can provide valuable information for detecting early disease and monitoring treatment effects at different stages of disease progression.


Neurology | 2008

Diffusion tensor imaging correlates of memory and language impairments in temporal lobe epilepsy

Carrie R. McDonald; Mazyar E. Ahmadi; Donald J. Hagler; Evelyn S. Tecoma; Vicente J. Iragui; Lusineh Gharapetian; A.M. Dale; Eric Halgren

Objective: To investigate the relationship between white matter tract integrity and language and memory performances in patients with temporal lobe epilepsy (TLE). Methods: Diffusion tensor imaging (DTI) was performed in 17 patients with TLE and 17 healthy controls. Fractional anisotropy (FA) and mean diffusivity (MD) were calculated for six fiber tracts (uncinate fasciculus [UF], arcuate fasciculus [AF], fornix [FORX], parahippocampal cingulum [PHC], inferior fronto-occipital fasciculus [IFOF], and corticospinal tract [CST]). Neuropsychological measures of memory and language were obtained and correlations were performed to evaluate the relationship between DTI and neuropsychological measures. Hierarchical regression was performed to determine unique contributions of each fiber tract to cognitive performances after controlling for age and hippocampal volume (HV). Results: Increases in MD of the left UF, PHC, and IFOF were associated with poorer verbal memory in TLE, as were bilateral increases in MD of the AF, and decreases in FA of the right AF. Increased MD of the AF and UF, and decreased FA of the AF, UF, and left IFOF were related to naming performances. No correlations were found between DTI measures and nonverbal memory or fluency in TLE. Regression analyses revealed that several fibers, including the AF, UF, and IFOF, independently predicted cognitive performances after controlling for HV. Conclusions: The results suggest that structural compromise to multiple fiber tracts is associated with memory and language impairments in patients with temporal lobe epilepsy. Furthermore, we provide initial evidence that diffusion tensor imaging tractography may provide clinically unique information for predicting neuropsychological status in patients with epilepsy. GLOSSARY: AF = arcuate fasciculus; BNT = Boston Naming Test; CST = corticospinal tract; DTI = diffusion tensor imaging; FA = fractional anisotropy; FORX = fornix; HV = hippocampal volume; ICHV = intracranial-adjusted HV; IFOF = inferior fronto-occipital fasciculus; LM = Logical Memory; MD = mean diffusivity; MTS = mesial temporal sclerosis; PHC = parahippocampal cingulum; TLE = temporal lobe epilepsy; UF = uncinate fasciculus; WMS-III = Wechsler Memory Scale–Third Edition.


Epilepsia | 2008

Regional neocortical thinning in mesial temporal lobe epilepsy.

Carrie R. McDonald; Donald J. Hagler; Mazyar E. Ahmadi; Evelyn S. Tecoma; Vicente J. Iragui; Lusineh Gharapetian; Anders M. Dale; Eric Halgren

Purpose: To determine the nature and extent of regional cortical thinning in patients with mesial temporal lobe epilepsy (MTLE).


American Journal of Neuroradiology | 2009

Side Matters: Diffusion Tensor Imaging Tractography in Left and Right Temporal Lobe Epilepsy

Mazyar E. Ahmadi; Donald J. Hagler; Carrie R. McDonald; Evelyn S. Tecoma; Vicente J. Iragui; Anders M. Dale; Eric Halgren

BACKGROUND AND PURPOSE: Noninvasive imaging plays a pivotal role in lateralization of the seizure focus in presurgical patients with temporal lobe epilepsy (TLE). Our goal was to evaluate the utility of diffusion tensor imaging (DTI) tractography in TLE. MATERIALS AND METHODS: Twenty-one patients with TLE (11 right, 10 left TLE) and 21 controls were enrolled. A 1.5T MR imaging scanner was used to obtain 51 diffusion-gradient-direction images per subject. Eight pairs of white matter fiber tracts were traced, and fiber tract fractional anisotropy (FA) was calculated and compared with controls. Fiber tract FA asymmetry and discriminant function analysis were evaluated in all subjects and fiber tracts respectively. RESULTS: Compared with controls, patients with TLE demonstrated decreased FA in 5 ipsilateral fiber tracts. Patients with left TLE had 6 ipsilateral and 4 contralateral fiber tracts with decreased FA. Patients with right TLE had 4 ipsilateral but no contralateral tracts with decreased FA compared with controls. Right-sided FA asymmetry was demonstrated in patients with right TLE for 5 fiber tracts, and left-sided asymmetry, for patients with left TLE for 1 fiber tract. Discriminant function analysis correctly categorized patients into left-versus-right TLE in 90% of all cases (100% correct in all patients without hippocampal sclerosis) by using uncinate fasciculus and parahippocampal fiber tracts. CONCLUSIONS: We found widespread reductions in fiber tract FA in patients with TLE, which were most pronounced ipsilateral to the seizure focus. Patients with left TLE had greater, more diffuse changes, whereas patients with right TLE showed changes that were primarily ipsilateral. Disease was lateralized to a high degree independent of identifiable hippocampal pathology noted on conventional MR imaging.


Human Brain Mapping | 2009

Automated white-matter tractography using a probabilistic diffusion tensor atlas: Application to temporal lobe epilepsy

Donald J. Hagler; Mazyar E. Ahmadi; Joshua M. Kuperman; Dominic Holland; Carrie R. McDonald; Eric Halgren; Anders M. Dale

Diffusion‐weighted magnetic resonance imaging allows researchers and clinicians to identify individual white matter fiber tracts and map their trajectories. The reliability and interpretability of fiber‐tracking procedures is improved when a priori anatomical information is used as a guide. We have developed an automated method for labeling white matter fiber tracts in individual subjects based on a probabilistic atlas of fiber tract locations and orientations. The probabilistic fiber atlas contains 23 fiber tracts and was constructed by manually identifying fiber tracts in 21 healthy controls and 21 patients with temporal lobe epilepsy (TLE). The manual tract identification method required ∼40 h of manual editing by a trained image analyst using multiple regions of interest to select or exclude streamline fibers. Identification of fiber tracts with the atlas does not require human intervention, but nonetheless benefits from the a priori anatomical information that was used to manually identify the tracts included in the atlas. We applied this method to compare fractional anisotropy—thought to be a measure of white matter integrity—in individual fiber tracts between control subjects and patients with TLE. We found that the atlas‐based and manual fiber selection methods produced a similar pattern of results. However, the between‐group effect sizes using the atlas‐derived fibers were generally as large or larger than those obtained with manually selected fiber tracks. Hum Brain Mapp, 2009.


Epilepsia | 2011

MRI analysis in temporal lobe epilepsy: Cortical thinning and white matter disruptions are related to side of seizure onset

Nobuko Kemmotsu; Holly M. Girard; Boris C. Bernhardt; Leonardo Bonilha; Jack J. Lin; Evelyn S. Tecoma; Vicente J. Iragui; Donald J. Hagler; Eric Halgren; Carrie R. McDonald

Purpose:  Past studies reported more widespread structural brain abnormalities in patients with left compared to right temporal lobe epilepsy (TLE), but the profile of these differences remains unknown. This study investigated the relationship between cortical thinning, white matter compromise, epilepsy variables, and the side of seizure onset, in patients with TLE.


Epilepsy Research | 2008

Subcortical and cerebellar atrophy in mesial temporal lobe epilepsy revealed by automatic segmentation

Carrie R. McDonald; Donald J. Hagler; Mazyar E. Ahmadi; Evelyn S. Tecoma; Vicente J. Iragui; Anders M. Dale; Eric Halgren

PURPOSE To determine the validity and utility of using automated subcortical segmentation to identify atrophy of the hippocampus and other subcortical and cerebellar structures in patients with mesial temporal lobe epilepsy (MTLE). METHODS Volumetric MRIs were obtained on 21 patients with MTLE (11 right, 10 left) and 21 age- and gender-matched healthy controls. Labeling of subcortical and cerebellar structures was accomplished using automated reconstruction software (FreeSurfer). Multivariate analysis of covariance (MANCOVA) was used to explore group differences in intracranial-normalized, age-adjusted volumes and structural asymmetries. Step-wise discriminant function analysis was used to identify the linear combination of volumes that optimized classification of individual subjects. RESULTS Results revealed the expected reduction in hippocampal volume on the side ipsilateral to the seizure focus, as well as bilateral reductions in thalamic and cerebellar gray matter volume. Analysis of structural asymmetries revealed significant asymmetry in the hippocampus and putamen in patients compared to controls. The discriminant function analysis revealed that patients with right and left MTLE were best distinguished from one another using a combination of subcortical volumes that included the right and left hippocampus and left thalamus (91-100% correct classification using cross-validation). DISCUSSION Volumetric data obtained with automated segmentation of subcortical and cerebellar structures approximate data from previous studies based on manual tracings. Our data suggest that automated segmentation can provide a clinically useful means of evaluating the nature and extent of structural damage in patients with MTLE and may increase diagnostic classification of patients, especially when hippocampal atrophy is mild.


Neuropsychologia | 2009

White Matter Tracts Associated with Set-Shifting in Healthy Aging

Michele E. Perry; Carrie R. McDonald; Donald J. Hagler; Lusineh Gharapetian; Joshua M. Kuperman; Alain K. Koyama; Anders M. Dale; Linda K. McEvoy

Attentional set-shifting ability, commonly assessed with the Trail Making Test (TMT), decreases with increasing age in adults. Since set-shifting performance relies on activity in widespread brain regions, deterioration of the white matter tracts that connect these regions may underlie the age-related decrease in performance. We used an automated fiber tracking method to investigate the relationship between white matter integrity in several cortical association tracts and TMT performance in a sample of 24 healthy adults, 21-80 years. Diffusion tensor images were used to compute average fractional anisotropy (FA) for five cortical association tracts, the corpus callosum (CC), and the corticospinal tract (CST), which served as a control. Results showed that advancing age was associated with declines in set-shifting performance and with decreased FA in the CC and in association tracts that connect frontal cortex to more posterior brain regions, including the inferior fronto-occipital fasciculus (IFOF), uncinate fasciculus (UF), and superior longitudinal fasciculus (SLF). Declines in average FA in these tracts, and in average FA of the right inferior longitudinal fasciculus (ILF), were associated with increased time to completion on the set-shifting subtask of the TMT but not with the simple sequencing subtask. FA values in these tracts were strong mediators of the effect of age on set-shifting performance. Automated tractography methods can enhance our understanding of the fiber systems involved in performance of specific cognitive tasks and of the functional consequences of age-related changes in those systems.


Journal of Neurology, Neurosurgery, and Psychiatry | 2013

Neurocognitive assessment following whole brain radiation therapy and radiosurgery for patients with cerebral metastases

S. McDuff; Zachary J. Taich; Joshua D. Lawson; Parag Sanghvi; Eric T. Wong; Fred G. Barker; Fred H. Hochberg; Jay S. Loeffler; Peter C. Warnke; Kevin T. Murphy; Arno J. Mundt; Bob S. Carter; Carrie R. McDonald; Clark Chen

The treatment of metastatic brain lesions remains a central challenge in oncology. Because most chemotherapeutic agents do not effectively cross the blood–brain barrier, it is widely accepted that radiation remains the primary modality of treatment. The mode by which radiation should be delivered has, however, become a source of intense controversy in recent years. The controversy involves whether patients with a limited number of brain metastases should undergo whole brain radiation therapy (WBRT) or stereotactic radiosurgery (SRS) delivered only to the radiographically visible tumours. Survival is comparable for patients treated with either modality. Instead, the controversy involves the neurocognitive function (NCF) of radiating cerebrum that appeared radiographically normal relative to effects of the growth from micro-metastatic foci. A fundamental question in this debate involves quantifying the effect of WBRT in patients with cerebral metastasis. To disentangle the effects of WBRT on neurocognition from the effects inherent to the underlying disease, we analysed the results from randomised controlled studies of prophylactic cranial irradiation in oncology patients as well as studies where patients with limited cerebral metastasis were randomised to SRS versus SRS+WBRT. In aggregate, these results suggest deleterious effects of WBRT in select neurocognitive domains. However, there are insufficient data to resolve the controversy of upfront WBRT versus SRS in the management of patients with limited cerebral metastases.


Journal of The International Neuropsychological Society | 2013

Are Empirically-Derived Subtypes of Mild Cognitive Impairment Consistent with Conventional Subtypes?

Lindsay R. Clark; Lisa Delano-Wood; David J. Libon; Carrie R. McDonald; Daniel A. Nation; Katherine J. Bangen; Amy J. Jak; Rhoda Au; David P. Salmon; Mark W. Bondi

Given the importance of identifying dementia prodromes for future treatment efforts, we examined two methods of diagnosing mild cognitive impairment (MCI) and determined whether empirically-derived MCI subtypes of these diagnostic methods were consistent with one another as well as with conventional MCI subtypes (i.e., amnestic, non-amnestic, single-domain, multi-domain). Participants were diagnosed with MCI using either conventional Petersen/Winblad criteria (n = 134; >1.5 SDs below normal on one test within a cognitive domain) or comprehensive neuropsychological criteria developed by Jak et al. (2009) (n = 80; >1 SD below normal on two tests within a domain), and the resulting samples were examined via hierarchical cluster and discriminant function analyses. Results showed that neuropsychological profiles varied depending on the criteria used to define MCI. Both criteria revealed an Amnestic subtype, consistent with prodromal Alzheimers disease (AD), and a Mixed subtype that may capture individuals in advanced stages of MCI. The comprehensive criteria uniquely yielded Dysexecutive and Visuospatial subtypes, whereas the conventional criteria produced a subtype that performed within normal limits, suggesting its susceptibility to false positive diagnostic errors. Whether these empirically-derived MCI subtypes correspond to dissociable neuropathologic substrates and represent reliable prodromes of dementia will require additional follow-up.

Collaboration


Dive into the Carrie R. McDonald's collaboration.

Top Co-Authors

Avatar

Anders M. Dale

University of California

View shared research outputs
Top Co-Authors

Avatar

Nikdokht Farid

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge