Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carson A. Wick is active.

Publication


Featured researches published by Carson A. Wick.


international conference of the ieee engineering in medicine and biology society | 2012

A System for Seismocardiography-Based Identification of Quiescent Heart Phases: Implications for Cardiac Imaging

Carson A. Wick; Jin-Jyh Su; James H. McClellan; Oliver Brand; Pamela T. Bhatti; Ashley L. Buice; Arthur E. Stillman; Xiangyang Tang; Srini Tridandapani

Seismocardiography (SCG), a representation of mechanical heart motion, may more accurately determine periods of cardiac quiescence within a cardiac cycle than the electrically derived electrocardiogram (EKG) and, thus, may have implications for gating in cardiac computed tomography. We designed and implemented a system to synchronously acquire echocardiography, EKG, and SCG data. The device was used to study the variability between EKG and SCG and characterize the relationship between the mechanical and electrical activity of the heart. For each cardiac cycle, the feature of the SCG indicating Aortic Valve Closure was identified and its time position with respect to the EKG was observed. This position was found to vary for different heart rates and between two human subjects. A color map showing the magnitude of the SCG acceleration and computed velocity was derived, allowing for direct visualization of quiescent phases of the cardiac cycle with respect to heart rate.


Environmental Science & Technology | 2016

Behavioral Reactivity Associated With Electronic Monitoring of Environmental Health Interventions-A Cluster Randomized Trial with Water Filters and Cookstoves

Evan A. Thomas; Sarita Tellez-Sanchez; Carson A. Wick; Miles Kirby; Laura Zambrano; Ghislaine Rosa; Thomas Clasen; Corey L. Nagel

Subject reactivity--when research participants change their behavior in response to being observed--has been documented showing the effect of human observers. Electronics sensors are increasingly used to monitor environmental health interventions, but the effect of sensors on behavior has not been assessed. We conducted a cluster randomized controlled trial in Rwanda among 170 households (70 blinded to the presence of the sensor, 100 open) testing whether awareness of an electronic monitor would result in a difference in weekly use of household water filters and improved cookstoves over a four-week surveillance period. A 63% increase in number of uses of the water filter per week between the groups was observed in week 1, an average of 4.4 times in the open group and 2.83 times in the blind group, declining in week 4 to an insignificant 55% difference of 2.82 uses in the open, and 1.93 in the blind. There were no significant differences in the number of stove uses per week between the two groups. For both filters and stoves, use decreased in both groups over four-week installation periods. This study suggests behavioral monitoring should attempt to account for reactivity to awareness of electronic monitors that persists for weeks or more.


IEEE Transactions on Biomedical Engineering | 2015

Seismocardiography-Based Detection of Cardiac Quiescence

Carson A. Wick; Omer T. Inan; James H. McClellan; Srini Tridandapani

Cardiac-computed tomography angiography (CTA) is a minimally invasive imaging technology for characterizing coronary arteries. A fundamental limitation of CTA imaging is cardiac movement, which can cause artifacts and reduce the quality of the obtained images. To mitigate this problem, current approaches involve gating the image based on the electrocardiogram (ECG) to predict the timing of quiescent periods of the cardiac cycle. This paper focuses on developing a foundation for using a mechanical alternative to the ECG for finding these quiescent periods: the seismocardiogram (SCG). SCG was used to determine beat-by-beat systolic and diastolic quiescent periods of the cardiac cycle for nine healthy subjects, and 11 subjects with various cardiovascular diseases. To reduce noise in the SCG, and quantify these quiescent periods, a Kalman filter was designed to extract the velocity of chest wall movement from the recorded SCG signals. The average systolic and diastolic quiescent periods were centered at 29% and 76% for the healthy subjects, and 33% and 79% for subjects with cardiovascular disease. Both inter and intrasubject variability in the quiescent phases were observed compared to ECG-predicted phases, suggesting that the ECG may be a suboptimal modality for predicting quiescence, and that the SCG provides complementary data to the ECG.


Medical Physics | 2015

Characterization of cardiac quiescence from retrospective cardiac computed tomography using a correlation-based phase-to-phase deviation measure

Carson A. Wick; James H. McClellan; Chesnal Arepalli; William F. Auffermann; Travis S. Henry; Faisal Khosa; Adam M. Coy; Srini Tridandapani

PURPOSE Accurate knowledge of cardiac quiescence is crucial to the performance of many cardiac imaging modalities, including computed tomography coronary angiography (CTCA). To accurately quantify quiescence, a method for detecting the quiescent periods of the heart from retrospective cardiac computed tomography (CT) using a correlation-based, phase-to-phase deviation measure was developed. METHODS Retrospective cardiac CT data were obtained from 20 patients (11 male, 9 female, 33-74 yr) and the left main, left anterior descending, left circumflex, right coronary artery (RCA), and interventricular septum (IVS) were segmented for each phase using a semiautomated technique. Cardiac motion of individual coronary vessels as well as the IVS was calculated using phase-to-phase deviation. As an easily identifiable feature, the IVS was analyzed to assess how well it predicts vessel quiescence. Finally, the diagnostic quality of the reconstructed volumes from the quiescent phases determined using the deviation measure from the vessels in aggregate and the IVS was compared to that from quiescent phases calculated by the CT scanner. Three board-certified radiologists, fellowship-trained in cardiothoracic imaging, graded the diagnostic quality of the reconstructions using a Likert response format: 1 = excellent, 2 = good, 3 = adequate, 4 = nondiagnostic. RESULTS Systolic and diastolic quiescent periods were identified for each subject from the vessel motion calculated using the phase-to-phase deviation measure. The motion of the IVS was found to be similar to the aggregate vessel (AGG) motion. The diagnostic quality of the coronary vessels for the quiescent phases calculated from the aggregate vessel (PAGG) and IVS (PIV S) deviation signal using the proposed methods was comparable to the quiescent phases calculated by the CT scanner (PCT). The one exception was the RCA, which improved for PAGG for 18 of the 20 subjects when compared to PCT (PCT = 2.48; PAGG = 2.07, p = 0.001). CONCLUSIONS A method for quantifying the motion of specific coronary vessels using a correlation-based, phase-to-phase deviation measure was developed and tested on 20 patients receiving cardiac CT exams. The IVS was found to be a suitable predictor of vessel quiescence. The diagnostic quality of the quiescent phases detected by the proposed methods was comparable to those calculated by the CT scanner. The ability to quantify coronary vessel quiescence from the motion of the IVS can be used to develop new CTCA gating techniques and quantify the resulting potential improvement in CTCA image quality.


IEEE Journal of Translational Engineering in Health and Medicine | 2013

Detection of Cardiac Quiescence From B-Mode Echocardiography Using a Correlation-Based Frame-to-Frame Deviation Measure

Carson A. Wick; James H. McClellan; Lakshminarayan Ravichandran; Srini Tridandapani

Two novel methods for detecting cardiac quiescent phases from B-mode echocardiography using a correlation-based frame-to-frame deviation measure were developed. Accurate knowledge of cardiac quiescence is crucial to the performance of many imaging modalities, including computed tomography coronary angiography (CTCA). Synchronous electrocardiography (ECG) and echocardiography data were obtained from 10 healthy human subjects (four male, six female, 23-45 years) and the interventricular septum (IVS) was observed using the apical four-chamber echocardiographic view. The velocity of the IVS was derived from active contour tracking and verified using tissue Doppler imaging echocardiography methods. In turn, the frame-to-frame deviation methods for identifying quiescence of the IVS were verified using active contour tracking. The timing of the diastolic quiescent phase was found to exhibit both inter- and intra-subject variability, suggesting that the current method of CTCA gating based on the ECG is suboptimal and that gating based on signals derived from cardiac motion are likely more accurate in predicting quiescence for cardiac imaging. Two robust and efficient methods for identifying cardiac quiescent phases from B-mode echocardiographic data were developed and verified. The methods presented in this paper will be used to develop new CTCA gating techniques and quantify the resulting potential improvement in CTCA image quality.


international conference of the ieee engineering in medicine and biology society | 2011

A trimodal system for the acquisition of synchronous echocardiography, electrocardiography, and seismocardiography data

Carson A. Wick; Jin-Jyh Su; Oliver Brand; James H. McClellan; Pamela T. Bhatti; Srini Tridandapani

A novel system was developed to acquire synchronous echocardiography, electrocardiography (EKG), and seismocardiography (SCG) data. The system was developed to facilitate the study of the relationship between the mechanical and electrical characteristics of the heart. The system has both a hardware and software component. The hardware component consists of an application-specific device designed and built to acquire both SCG and EKG signals simultaneously. The software component consists of a package developed to record and synchronize data from both the device and a clinical ultrasound machine. A feasibility test was performed by simultaneous acquisition of a synchronous dataset from a human subject.


IEEE Journal of Translational Engineering in Health and Medicine | 2017

Seismocardiography-Based Cardiac Computed Tomography Gating Using Patient-Specific Template Identification and Detection

Jingting Yao; Srini Tridandapani; Carson A. Wick; Pamela T. Bhatti

To more accurately trigger cardiac computed tomography angiography (CTA) than electrocardiography (ECG) alone, a sub-system is proposed as an intermediate step toward fusing ECG with seismocardiography (SCG). Accurate prediction of quiescent phases is crucial to prospectively gating CTA, which is susceptible to cardiac motion and, thus, can affect the diagnostic quality of images. The key innovation of this sub-system is that it identifies the SCG waveform corresponding to heart sounds and determines their phases within the cardiac cycles. Furthermore, this relationship is modeled as a linear function with respect to heart rate. For this paper, B-mode echocardiography is used as the gold standard for identifying the quiescent phases. We analyzed synchronous ECG, SCG, and echocardiography data acquired from seven healthy subjects (mean age: 31; age range: 22–48; males: 4) and 11 cardiac patients (mean age: 56; age range: 31–78; males: 6). On average, the proposed algorithm was able to successfully identify 79% of the SCG waveforms in systole and 68% in diastole. The simulated results show that SCG-based prediction produced less average phase error than that of ECG. It was found that the accuracy of ECG-based gating is more susceptible to increases in heart rate variability, while SCG-based gating is susceptible to high cycle to cycle variability in morphology. This pilot work of prediction using SCG waveforms enriches the framework of a comprehensive system with multiple modalities that could potentially, in real time, improve the image quality of CTA.


Physics in Medicine and Biology | 2016

Echocardiography as an indication of continuous-time cardiac quiescence.

Carson A. Wick; W F Auffermann; Amit J. Shah; Omer T. Inan; Pamela T. Bhatti; Srini Tridandapani

Cardiac computed tomography (CT) angiography using prospective gating requires that data be acquired during intervals of minimal cardiac motion to obtain diagnostic images of the coronary vessels free of motion artifacts. This work is intended to assess B-mode echocardiography as a continuous-time indication of these quiescent periods to determine if echocardiography can be used as a cost-efficient, non-ionizing modality to develop new prospective gating techniques for cardiac CT. These new prospective gating approaches will not be based on echocardiography itself but on CT-compatible modalities derived from the mechanics of the heart (e.g. seismocardiography and impedance cardiography), unlike the current standard electrocardiogram. To this end, echocardiography and retrospectively-gated CT data were obtained from ten patients with varied cardiac conditions. CT reconstructions were made throughout the cardiac cycle. Motion of the interventricular septum (IVS) was calculated from both echocardiography and CT reconstructions using correlation-based, deviation techniques. The IVS was chosen because it (1) is visible in echocardiography images, whereas the coronary vessels generally are not, and (2) has been shown to be a suitable indicator of cardiac quiescence. Quiescent phases were calculated as the minima of IVS motion and CT volumes were reconstructed for these phases. The diagnostic quality of the CT reconstructions from phases calculated from echocardiography and CT data was graded on a four-point Likert scale by a board-certified radiologist fellowship-trained in cardiothoracic radiology. Using a Wilcoxon signed-rank test, no significant difference in the diagnostic quality of the coronary vessels was found between CT volumes reconstructed from echocardiography- and CT-selected phases. Additionally, there was a correlation of 0.956 between the echocardiography- and CT-selected phases. This initial work suggests that B-mode echocardiography can be used as a tool to develop CT-compatible gating techniques based on modalities derived from cardiac mechanics rather than relying on the ECG alone.


international conference of the ieee engineering in medicine and biology society | 2014

Seismocardiography-based detection of cardiac quiescence for cardiac computed tomography angiography.

Carson A. Wick; James H. McClellan; Omer T. Inan; Srini Tridandapani

As a measure of chest wall acceleration caused by cardiac motion, the seismocardiogram (SCG) has the potential to supplement the electrocardiogram (ECG) to more accurately trigger cardiac computed tomography angiography (CTA) data acquisition during periods of cardiac quiescence. The SCG was used to identify the systolic and diastolic quiescent periods of the cardiac cycle on a beat-by-beat basis and from composite velocity signals for nine healthy subjects. The cardiac velocity transmitted to the chest wall was calculated using a Kalman filter. The average systolic and diastolic quiescent periods were centered at 30% and 76%, respectively. Inter- and intra-subject variability of the quiescent phases with respect to the ECG was observed, suggesting that the ECG may be a suboptimal modality for predicting cardiac quiescence.


international conference of the ieee engineering in medicine and biology society | 2015

Relationship between cardiac quiescent periods derived from seismocardiography and echocardiography.

Carson A. Wick; Omer T. Inan; Pamela T. Bhatti; Srini Tridandapani

The seismocardiogram (SCG) is a measure of chest wall acceleration due to cardiac motion that could potentially supplement the electrocardiogram (ECG) to more reliably predict cardiac quiescence. Accurate prediction is critical for modalities requiring minimal motion during imaging data acquisition, such as cardiac computed tomography (CT) and magnetic resonance imaging (MRI). For seven healthy subjects, SCG and B-mode echocardiography were used to identify quiescent periods on a beat-by-beat basis. Quiescent periods were detected as time intervals when the magnitude of the velocity signals calculated from SCG and echocardiography were less than a specified threshold. The quiescent periods detected from SCG were compared to those detected from B-mode echocardiography. The quiescent periods of the SCG were found to occur before those detected by echocardiography. A linear relationship between the delay from SCG- to echocardiography-detected phases with respect to heart rate was found. This delay could potentially be used to predict cardiac quiescence from SCG-observed quiescence for use with cardiac imaging modalities such as CT and MRI.

Collaboration


Dive into the Carson A. Wick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

James H. McClellan

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Pamela T. Bhatti

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Omer T. Inan

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jin-Jyh Su

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Oliver Brand

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evan A. Thomas

Portland State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge