Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carson R. Stephens is active.

Publication


Featured researches published by Carson R. Stephens.


Chemistry & Biology | 2009

Substrate-Guided Design of a Potent and Selective Kallikrein-Related Peptidase Inhibitor for Kallikrein 4

Joakim E. Swedberg; Laura V. Nigon; Janet C. Reid; Simon J. de Veer; Carina Walpole; Carson R. Stephens; Terry Walsh; Thomas K. Takayama; John D. Hooper; Judith A. Clements; Ashley M. Buckle; Jonathan M. Harris

Human kallikrein-related peptidase 4 (KLK4/prostase), a trypsin-like serine protease, is a potential target for prostate cancer treatment because of its proteolytic ability to activate many tumorigenic and metastatic pathways including the protease activated receptors (PARs). Currently there are no KLK4-specific small-molecule inhibitors available for therapeutic development. Here we re-engineer the naturally occurring sunflower trypsin inhibitor to selectively block the proteolytic activity of KLK4 and prevent stimulation of PAR activity in a cell-based system. The re-engineered inhibitor was designed using a combination of molecular modeling and sparse matrix substrate screening.


The Prostate | 2011

Reactivation of embryonic nodal signaling is associated with tumor progression and promotes the growth of prostate cancer cells.

Mitchell G. Lawrence; Naira V. Margaryan; Daniela Loessner; Angus Collins; Kris Kerr; Megan Turner; Elisabeth A. Seftor; Carson R. Stephens; John Lai; Lynne Marie Postovit; Judith A. Clements; Mary J.C. Hendrix

Nodal is a member of the transforming growth factor β (TGFβ) superfamily that directs embryonic patterning and promotes the plasticity and tumorigenicity of tumor cells, but its role in the prostate is unknown. The goal of this study was to characterize the expression and function of Nodal in prostate cancer and determine whether, like other TGFβ ligands, it modulates androgen receptor (AR) activity.


Cancer Research | 2010

Kallikrein-Related Peptidase 7 Promotes Multicellular Aggregation via the α5β1 Integrin Pathway and Paclitaxel Chemoresistance in Serous Epithelial Ovarian Carcinoma

Ying Dong; Olivia L. Tan; Daniela Loessner; Carson R. Stephens; Carina Walpole; Glen M. Boyle; Peter G. Parsons; Judith A. Clements

Kallikrein-related peptidase 7 (KLK7) is upregulated in epithelial ovarian carcinoma (EOC) with high levels correlated with poor prognosis. However, the mechanisms underlying this relationship and the role of KLK7 in EOC progression are unknown. We report that two different KLK7 transcripts, KLK7-253 and KLK7-181, are simultaneously expressed in high-grade serous EOC. Multicellular aggregates (MCA), which promote cell survival and chemoresistance, were observed in SKOV-3 cells stably overexpressing KLK7-253 in particular. Importantly, these MCAs invade into a monolayer of mesothelial cells and form cancer cell foci. Blocking MCA using antibodies against KLK7 and alpha(5)beta(1) and beta(1) integrins confirmed the involvement of KLK7 and integrin-regulated cell adhesion. Increased levels of alpha(5)/beta(1) integrins and enhanced attachment to fibronectin and vitronectin, which was blocked with an anti-beta(1) integrin antibody, were also observed. Finally, Western blot and immunohistochemistry showed higher KLK7 and alpha(5)/beta(1) integrin levels in serous EOC cells from ascites and tumor samples from chemotherapy nonresponders with short postsurvival times. Additionally, both KLK7-253 and KLK7-181 clones were more resistant to paclitaxel treatment in vitro. These findings suggest a mechanism for the association of high KLK7 levels with chemoresistance and poor prognosis for serous EOC patients by promotion of peritoneal dissemination and reinvasion via increased MCA and alpha(5)beta(1) integrin-dependent cell adhesion.


PLOS ONE | 2013

Paclitaxel Resistance and Multicellular Spheroid Formation Are Induced by Kallikrein-Related Peptidase 4 in Serous Ovarian Cancer Cells in an Ascites Mimicking Microenvironment

Ying Dong; Carson R. Stephens; Carina Walpole; Joakim E. Swedberg; Glen M. Boyle; Peter G. Parsons; Michael A. McGuckin; Jonathan M. Harris; Judith A. Clements

High tumor kallikrein-related-peptidase 4 (KLK4) levels are associated with a poor outcome for women with serous epithelial ovarian cancer (EOC), for which peritoneal dissemination and chemoresistance are key events. To determine the role of KLK4 in these events, we examined KLK4-transfected SKOV-3 and endogenous KLK4 expressing OVCA432 cells in 3-dimensional (3D) suspension culture to mimic the ascites microenvironment. KLK4-SKOV-3 cells formed multicellular aggregates (MCAs) as seen in ascites, as did SKOV-3 cells treated with active KLK4. MCA formation was reduced by treatment with a KLK4 blocking antibody or the selective active site KLK4 sunflower trypsin inhibitor (SFTI-FCQR). KLK4-MCAs formed larger cancer cell foci in mesothelial cell monolayers than those formed by vector and native SKOV-3 cells, suggesting KLK4-MCAs are highly invasive in the peritoneal microenvironment. A high level of KLK4 is expressed by ascitic EOC cells compared to matched primary tumor cells, further supporting its role in the ascitic microenvironment. Interestingly, KLK4 transfected SKOV-3 cells expressed high levels of the KLK4 substrate, urokinase plasminogen activator (uPA), particularly in 3D-suspension, and high levels of both KLK4 and uPA were observed in patient cells taken from ascites. Importantly, the KLK4-MCAs were paclitaxel resistant which was reversed by SFTI-FCQR and to a lesser degree by the general serine protease inhibitor, Aprotinin, suggesting that in addition to uPA, other as yet unidentified substrates of KLK4 must be involved. Nonetheless, these data suggest that KLK4 inhibition, in conjunction with paclitaxel, may improve the outcome for women with serous epithelial ovarian cancer and high KLK4 levels in their tumors.


Endocrinology | 2012

Long Terminal Repeats Act as Androgen-Responsive Enhancers for the PSA-Kallikrein Locus

Mitchell G. Lawrence; Carson R. Stephens; Eleanor F. Need; John Lai; Grant Buchanan; Judith A. Clements

The androgen receptor (AR) signaling pathway is a common therapeutic target for prostate cancer, because it is critical for the survival of both hormone-responsive and castrate-resistant tumor cells. Most of the detailed understanding that we have of AR transcriptional activation has been gained by studying classical target genes. For more than two decades, Kallikrein 3 (KLK3) (prostate-specific antigen) has been used as a prototypical AR target gene, because it is highly androgen responsive in prostate cancer cells. Three regions upstream of the KLK3 gene, including the distal enhancer, are known to contain consensus androgen-responsive elements required for AR-mediated transcriptional activation. Here, we show that KLK3 is one of a specific cluster of androgen-regulated genes at the centromeric end of the kallikrein locus with enhancers that evolved from the long terminal repeat (LTR) (LTR40a) of an endogenous retrovirus. Ligand-dependent recruitment of the AR to individual LTR-derived enhancers results in concurrent up-regulation of endogenous KLK2, KLK3, and KLKP1 expression in LNCaP prostate cancer cells. At the molecular level, a kallikrein-specific duplication within the LTR is required for maximal androgen responsiveness. Therefore, KLK3 represents a subset of target genes regulated by repetitive elements but is not typical of the whole spectrum of androgen-responsive transcripts. These data provide a novel and more detailed understanding of AR transcriptional activation and emphasize the importance of repetitive elements as functional regulatory units.


PLOS ONE | 2011

Association between Prostinogen (KLK15) genetic variants and prostate cancer risk and aggressiveness in Australia and a meta-analysis of GWAS data.

Jyotsna Batra; Felicity Lose; Tracy O'Mara; Louise Marquart; Carson R. Stephens; Kimberley Alexander; Srilakshmi Srinivasan; Rosalind Eeles; Douglas F. Easton; Ali Amin Al Olama; Zsofia Kote-Jarai; Michelle Guy; Kenneth Muir; Aritaya Lophatananon; Aneela A. Rahman; David E. Neal; Freddie C. Hamdy; Jenny Donovan; Suzanne K. Chambers; Robert A. Gardiner; Joanne F. Aitken; John Yaxley; Mary-Anne Kedda; Judith A. Clements; Amanda B. Spurdle

Background Kallikrein 15 (KLK15)/Prostinogen is a plausible candidate for prostate cancer susceptibility. Elevated KLK15 expression has been reported in prostate cancer and it has been described as an unfavorable prognostic marker for the disease. Objectives We performed a comprehensive analysis of association of variants in the KLK15 gene with prostate cancer risk and aggressiveness by genotyping tagSNPs, as well as putative functional SNPs identified by extensive bioinformatics analysis. Methods and Data Sources Twelve out of 22 SNPs, selected on the basis of linkage disequilibrium pattern, were analyzed in an Australian sample of 1,011 histologically verified prostate cancer cases and 1,405 ethnically matched controls. Replication was sought from two existing genome wide association studies (GWAS): the Cancer Genetic Markers of Susceptibility (CGEMS) project and a UK GWAS study. Results Two KLK15 SNPs, rs2659053 and rs3745522, showed evidence of association (p<0.05) but were not present on the GWAS platforms. KLK15 SNP rs2659056 was found to be associated with prostate cancer aggressiveness and showed evidence of association in a replication cohort of 5,051 patients from the UK, Australia, and the CGEMS dataset of US samples. A highly significant association with Gleason score was observed when the data was combined from these three studies with an Odds Ratio (OR) of 0.85 (95% CI = 0.77–0.93; p = 2.7×10−4). The rs2659056 SNP is predicted to alter binding of the RORalpha transcription factor, which has a role in the control of cell growth and differentiation and has been suggested to control the metastatic behavior of prostate cancer cells. Conclusions Our findings suggest a role for KLK15 genetic variation in the etiology of prostate cancer among men of European ancestry, although further studies in very large sample sets are necessary to confirm effect sizes.


Journal of Proteome Research | 2016

Prostate Cancer-Associated Kallikrein-Related Peptidase 4 Activates Matrix Metalloproteinase-1 and Thrombospondin-1.

Ruth Anna Fuhrman-Luck; Scott H. Stansfield; Carson R. Stephens; Daniela Loessner; Judith A. Clements

Prostate cancer metastasis to bone is terminal; thus, novel therapies are required to prevent end-stage disease. Kallikrein-related peptidase 4 (KLK4) is a serine protease that is overproduced in localized prostate cancer and is abundant in prostate cancer bone metastases. In vitro, KLK4 induces tumor-promoting phenotypes; however, the underlying proteolytic mechanism is undefined. The protein topography and migration analysis platform (PROTOMAP) was used for high-depth identification of KLK4 substrates secreted by prostate cancer bone metastasis-derived PC-3 cells to delineate the mechanism of KLK4 action in advanced prostate cancer. Thirty-six putative novel substrates were determined from the PROTOMAP analysis. In addition, KLK4 cleaved the established substrate, urokinase-type plasminogen activator, thus validating the approach. KLK4 activated matrix metalloproteinase-1 (MMP1), a protease that promotes prostate tumor growth and metastasis. MMP1 was produced in the tumor compartment of prostate cancer bone metastases, highlighting its accessibility to KLK4 at this site. KLK4 further liberated an N-terminal product, with purported angiogenic activity, from thrombospondin-1 (TSP1) and cleaved TSP1 in an osteoblast-derived matrix. This is the most comprehensive analysis of the proteolytic action of KLK4 in an advanced prostate cancer model to date, highlighting KLK4 as a potential multifunctional regulator of prostate cancer progression.


Experimental Cell Research | 2015

Murine, but not human, ephrin-B2 can be efficiently cleaved by the serine protease kallikrein-4: implications for xenograft models of human prostate cancer.

Jessica E. Lisle; Inga Mertens-Walker; Carson R. Stephens; Scott H. Stansfield; Judith A. Clements; Adrian C. Herington; Sally-Anne Stephenson

BACKGROUND Ephrin-B2 is the sole physiologically-relevant ligand of the receptor tyrosine kinase EphB4, which is over-expressed in many epithelial cancers, including 66% of prostate cancers, and contributes to cancer cell survival, invasion and migration. Crucially, however, the cancer-promoting EphB4 signalling pathways are independent of interaction with its ligand ephrin-B2, as activation of ligand-dependent signalling causes tumour suppression. Ephrin-B2, however, is often found on the surface of endothelial cells of the tumour vasculature, where it can regulate angiogenesis to support tumour growth. Proteolytic cleavage of endothelial cell ephrin-B2 has previously been suggested as one mechanism whereby the interaction between tumour cell-expressed EphB4 and endothelial cell ephrin-B2 is regulated to support both cancer promotion and angiogenesis. METHODS An in silico approach was used to search accessible surfaces of 3D protein models for cleavage sites for the key prostate cancer serine protease, KLK4, and this identified murine ephrin-B2 as a potential KLK4 substrate. Mouse ephrin-B2 was then confirmed as a KLK4 substrate by in vitro incubation of recombinant mouse ephrin-B2 with active recombinant human KLK4. Cleavage products were visualised by SDS-PAGE, silver staining and Western blot and confirmed by N-terminal sequencing. RESULTS At low molar ratios, KLK4 cleaved murine ephrin-B2 but other prostate-specific KLK family members (KLK2 and KLK3/PSA) were less efficient, suggesting cleavage was KLK4-selective. The primary KLK4 cleavage site in murine ephrin-B2 was verified and shown to correspond to one of the in silico predicted sites between extracellular domain residues arginine 178 and asparagine 179. Surprisingly, the highly homologous human ephrin-B2 was poorly cleaved by KLK4 at these low molar ratios, likely due to the 3 amino acid differences at this primary cleavage site. CONCLUSION These data suggest that in in vivo mouse xenograft models, endogenous mouse ephrin-B2, but not human tumour ephrin-B2, may be a downstream target of cancer cell secreted human KLK4. This is a critical consideration when interpreting data from murine explants of human EphB4+/KLK4+ cancer cells, such as prostate cancer cells, where differential effects may be seen in mouse models as opposed to human clinical situations.


Experimental Cell Research | 2015

EphB4 localises to the nucleus of prostate cancer cells

Inga Mertens-Walker; Jessica E. Lisle; William A. Nyberg; Carson R. Stephens; Leslie Burke; Raphael Rutkowski; Adrian C. Herington; Sally-Anne Stephenson

The EphB4 receptor tyrosine kinase is over-expressed in a variety of different epithelial cancers including prostate where it has been shown to be involved in survival, migration and angiogenesis. We report here that EphB4 also resides in the nucleus of prostate cancer cell lines. We used in silico methods to identify a bipartite nuclear localisation signal (NLS) in the extracellular domain and a monopartite NLS sequence in the intracellular kinase domain of EphB4. To determine whether both putative NLS sequences were functional, fragments of the EphB4 sequence containing each NLS were cloned to create EphB4NLS-GFP fusion proteins. Localisation of both NLS-GFP proteins to the nuclei of transfected cells was observed, demonstrating that EphB4 contains two functional NLS sequences. Mutation of the key amino residues in both NLS sequences resulted in diminished nuclear accumulation. As nuclear translocation is often dependent on importins we confirmed that EphB4 and importin-α can interact. To assess if nuclear EphB4 could be implicated in gene regulatory functions potential EphB4-binding genomic loci were identified using chromatin immunoprecipitation and Lef1 was confirmed as a potential target of EphB4-mediated gene regulation. These novel findings add further complexity to the biology of this important cancer-associated receptor.


Molecular Oncology | 2017

Kallikrein‐related peptidase 4 induces cancer‐associated fibroblast features in prostate‐derived stromal cells

Thomas Kryza; Lakmali Munasinghage Silva; Nathalie Bock; Ruth Anna Fuhrman-Luck; Carson R. Stephens; Jin Gao; Hema Samaratunga; Mitchell G. Lawrence; John D. Hooper; Ying Dong; Gail P. Risbridger; Judith A. Clements

The reciprocal communication between cancer cells and their microenvironment is critical in cancer progression. Although involvement of cancer‐associated fibroblasts (CAF) in cancer progression is long established, the molecular mechanisms leading to differentiation of CAFs from normal fibroblasts are poorly understood. Here, we report that kallikrein‐related peptidase‐4 (KLK4) promotes CAF differentiation. KLK4 is highly expressed in prostate epithelial cells of premalignant (prostatic intraepithelial neoplasia) and malignant lesions compared to normal prostate epithelia, especially at the peristromal interface. KLK4 induced CAF‐like features in the prostate‐derived WPMY1 normal stromal cell line, including increased expression of alpha‐smooth muscle actin, ESR1 and SFRP1. KLK4 activated protease‐activated receptor‐1 in WPMY1 cells increasing expression of several factors (FGF1, TAGLN, LOX, IL8, VEGFA) involved in prostate cancer progression. In addition, KLK4 induced WPMY1 cell proliferation and secretome changes, which in turn stimulated HUVEC cell proliferation that could be blocked by a VEGFA antibody. Importantly, the genes dysregulated by KLK4 treatment of WPMY1 cells were also differentially expressed between patient‐derived CAFs compared to matched nonmalignant fibroblasts and were further increased by KLK4 treatment. Taken together, we propose that epithelial‐derived KLK4 promotes tumour progression by actively promoting CAF differentiation in the prostate stromal microenvironment.

Collaboration


Dive into the Carson R. Stephens's collaboration.

Top Co-Authors

Avatar

Judith A. Clements

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ying Dong

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

John D. Hooper

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carina Walpole

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Daniela Loessner

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Adrian C. Herington

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Glen M. Boyle

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Inga Mertens-Walker

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Janet C. Reid

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge