Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John D. Hooper is active.

Publication


Featured researches published by John D. Hooper.


Cancer and Metastasis Reviews | 2003

Membrane anchored serine proteases: A rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer

Sarah Netzel-Arnett; John D. Hooper; Roman Szabo; Edwin L. Madison; James P. Quigley; Thomas H. Bugge; Toni M. Antalis

Dysregulated proteolysis is a hallmark of cancer. Malignant cells require a range of proteolytic activities to enable growth, survival, and expansion. Serine proteases of the S1 or trypsin-like family have well recognized roles in the maintenance of normal homeostasis as well as in the pathology of diseases such as cancer. Recently a rapidly expanding subgroup of S1 proteases has been recognized that are directly anchored to plasma membranes. These membrane anchored serine proteases are anchored either via a carboxy-terminal transmembrane domain (Type I), a carboxy terminal hydrophobic region that functions as a signal for membrane attachment via a glycosyl-phosphatidylinositol linkage (GPI-anchored), or via an amino terminal proximal transmembrane domain (Type II or TTSP). The TTSPs also encode multiple domains in their stem regions that may function in regulatory interactions. The serine protease catalytic domains of these enzymes show high homology but also possess features indicating unique substrate specificities. It is likely that the membrane anchored serine proteases have evolved to perform complex functions in the regulation of cellular signaling events at the plasma membrane and within the extracellular matrix. Disruption or mutation of several of the genes encoding these proteases are associated with disease. Many of the membrane anchored serine proteases show restricted tissue distribution in normal cells, but their expression is widely dysregulated during tumor growth and progression. Diagnostic or therapeutic targeting of the membrane anchored serine proteases has potential as promising new approaches for the treatment of cancer and other diseases.


Pharmacology & Therapeutics | 2011

Structure, function and pathophysiology of protease activated receptors.

Mark N. Adams; Mei-Kwan Yau; Jacky Y. Suen; David P. Fairlie; Morley D. Hollenberg; John D. Hooper

Discovered in the 1990s, protease activated receptors(1) (PARs) are membrane-spanning cell surface proteins that belong to the G protein coupled receptor (GPCR) family. A defining feature of these receptors is their irreversible activation by proteases; mainly serine. Proteolytic agonists remove the PAR extracellular amino terminal pro-domain to expose a new amino terminus, or tethered ligand, that binds intramolecularly to induce intracellular signal transduction via a number of molecular pathways that regulate a variety of cellular responses. By these mechanisms PARs function as cell surface sensors of extracellular and cell surface associated proteases, contributing extensively to regulation of homeostasis, as well as to dysfunctional responses required for progression of a number of diseases. This review examines common and distinguishing structural features of PARs, mechanisms of receptor activation, trafficking and signal termination, and discusses the physiological and pathological roles of these receptors and emerging approaches for modulating PAR-mediated signaling in disease.


The International Journal of Biochemistry & Cell Biology | 2010

Molecular cell biology of androgen receptor signalling.

Nigel C. Bennett; Robert A. Gardiner; John D. Hooper; David W. Johnson; Glenda C. Gobe

The classical action of androgen receptor (AR) is to regulate gene transcriptional processes via AR nuclear translocation, response element binding and recruitment of, or crosstalk with, transcription factors. AR also utilises non-classical, non-genomic mechanisms of signal transduction. These precede gene transcription or protein synthesis, and involve steroid-induced modulation of cytoplasmic or cell membrane-bound regulatory proteins. Despite many decades of investigation, the role of AR in gene regulation of cells and tissues remains only partially characterised. AR exerts most of its effects in sex hormone-dependent tissues of the body, but the receptor is also expressed in many tissues not previously thought to be androgen sensitive. Thus it is likely that a complex, more over-arching, role for AR exists. Each AR domain co-ordinates a multitude of individual and vital roles via a diverse array of interacting partner molecules that are necessary for cellular and tissue development and maintenance. Aberrant AR activity, promoted by mutations or binding partner misregulation, can present as many clinical manifestations including androgen insensitivity syndrome and prostate cancer. In the case of malignant prostate cancer, treatment generally revolves around androgen deprivation therapies designed to interfere with AR action and the androgen signalling axis. Androgen therapies for prostate cancer often fail, highlighting a real need for increased research into AR function.


Biological Chemistry | 2001

The Expanded Human Kallikrein (KLK) gene family : genomic organisation, tissue specific expression and potential functions

Judith A. Clements; John D. Hooper; Ying Dong; Tracey J. Harvey

Abstract The tissue kallikreins are serine proteases encoded by highly conserved multigene families. The rodent kallikrein (KLK) families are particularly large, consisting of 13 26 genes clustered in one chromosomal locus. It has been recently recognised that the human KLK gene family is of a similar size (15 genes) with the identification of another 12 related genes (KLK4-KLK15) within and adjacent to the original human KLK locus (KLK1-3) on chromosome 19q13.4. The structural organisation and size of these new genes is similar to that of other KLK genes except for additional exons encoding 5 or 3 untranslated regions. Moreover, many of these genes have multiple mRNA transcripts, a trait not observed with rodent genes. Unlike all other kallikreins, the KLK4-KLK15 encoded proteases are less related (25–44%) and do not contain a conventional kallikrein loop. Clusters of genes exhibit high prostatic (KLK2-4, KLK15) or pancreatic (KLK6-13) expression, suggesting evolutionary conservation of elements conferring tissue specificity. These genes are also expressed, to varying degrees, in a wider range of tissues suggesting a functional involvement of these newer human kallikrein proteases in a diverse range of physiological processes.


Oncogene | 2003

Subtractive immunization using highly metastatic human tumor cells identifies SIMA135/CDCP1, a 135 kDa cell surface phosphorylated glycoprotein antigen

John D. Hooper; Andries Zijlstra; Ronald T. Aimes; Hongyan Liang; Gisela F. Claassen; David Tarin; Jacqueline E. Testa; James P. Quigley

We have previously used a subtractive immunization (SI) approach to generate monoclonal antibodies (mAbs) against proteins preferentially expressed by the highly metastatic human epidermoid carcinoma cell line, M+HEp3. Here we report the immunopurification, identification and characterization of SIMA135/CDCP1 (subtractive immunization M+HEp3 associated 135 kDa protein/CUB domain containing protein 1) using one of these mAbs designated 41-2. Protein expression levels of SIMA135/CDCP1 correlated with the metastatic ability of variant HEp3 cell lines. Protein sequence analysis predicted a cell surface location and type I orientation of SIMA135/CDCP1, which was confirmed directly by immunocytochemistry. Analysis of deglycosylated cell lysates indicated that up to 40 kDa of the apparent molecular weight of SIMA135/CDCP1 is because of N-glycosylation. Western blot analysis using a antiphosphotyrosine antibody demonstrated that SIMA135/CDCP1 from HEp3 cells is tyrosine phosphorylated. Selective inhibitor studies indicated that an Src kinase family member is involved in the tyrosine phosphorylation of the protein. In addition to high expression in M+HEp3 cells, the SIMA135/CDCP1 protein is expressed to varying levels in 13 other human tumor cell lines, manifesting only a weak correlation with the reported metastatic ability of these tumor cell lines. The protein is not detected in normal human fibroblasts and endothelial cells. Northern blot analysis indicated that SIMA135/CDCP1 mRNA has a restricted expression pattern in normal human tissues with highest levels of expression in skeletal muscle and colon. Immunohistochemical analysis indicated apical and basal plasma membrane expression of SIMA135/CDCP1 in epithelial cells in normal colon. In colon tumor, SIMA135/CDCP1 expression appeared dysregulated showing extensive cell surface as well as cytoplasmic expression. Consistent with in vitro shedding experiments on HEp3 cells, SIMA135/CDCP1 was also detected within the lumen of normal and cancerous colon crypts, suggesting that protein shedding may occur in vivo. Thus, specific immunodetection followed by proteomic analysis allows for the identification and partial characterization of a heretofore uncharacterized human cell surface antigen.


Journal of Biological Chemistry | 2008

Kallikrein-related Peptidase 4 (KLK4) Initiates Intracellular Signaling via Protease-activated Receptors (PARs) KLK4 AND PAR-2 ARE CO-EXPRESSED DURING PROSTATE CANCER PROGRESSION

Andrew J. Ramsay; Ying Dong; Melanie L. Hunt; MayLa Linn; Hemamali Samaratunga; Judith A. Clements; John D. Hooper

Kallikrein-related peptidase 4 (KLK4) is one of the 15 members of the human KLK family and a trypsin-like, prostate cancer-associated serine protease. Signaling initiated by trypsin-like serine proteases are transduced across the plasma membrane primarily by members of the protease-activated receptor (PAR) family of G protein-coupled receptors. Here we show, using Ca2+ flux assays, that KLK4 signals via both PAR-1 and PAR-2 but not via PAR-4. Dose-response analysis over the enzyme concentration range 0.1–1000 nm indicated that KLK4-induced Ca2+ mobilization via PAR-1 is more potent than via PAR-2, whereas KLK4 displayed greater efficacy via the latter PAR. We confirmed the specificity of KLK4 signaling via PAR-2 using in vitro protease cleavage assays and anti-phospho-ERK1/2/total ERK1/2 Western blot analysis of PAR-2-overexpressing and small interfering RNA-mediated receptor knockdown cell lines. Consistently, confocal microscopy analyses indicated that KLK4 initiates loss of PAR-2 from the cell surface and receptor internalization. Immunohistochemical analysis indicated the co-expression of agonist and PAR-2 in primary prostate cancer and bone metastases, suggesting that KLK4 signaling via this receptor will have pathological relevance. These data provide insight into KLK4-mediated cell signaling and suggest that signals induced by this enzyme via PARs may be important in prostate cancer.


Biochemical Journal | 2010

The cutting edge: membrane-anchored serine protease activities in the pericellular microenvironment.

Toni M. Antalis; Marguerite S. Buzza; Kathryn M. Hodge; John D. Hooper; Sarah Netzel-Arnett

The serine proteases of the trypsin-like (S1) family play critical roles in many key biological processes including digestion, blood coagulation, and immunity. Members of this family contain N- or C-terminal domains that serve to tether the serine protease catalytic domain directly to the plasma membrane. These membrane-anchored serine proteases are proving to be key components of the cell machinery for activation of precursor molecules in the pericellular microenvironment, playing vital functions in the maintenance of homoeostasis. Substrates activated by membrane-anchored serine proteases include peptide hormones, growth and differentiation factors, receptors, enzymes, adhesion molecules and viral coat proteins. In addition, new insights into our understanding of the physiological functions of these proteases and their involvement in human pathology have come from animal models and patient studies. The present review discusses emerging evidence for the diversity of this fascinating group of membrane serine proteases as potent modifiers of the pericellular microenvironment through proteolytic processing of diverse substrates. We also discuss the functional consequences of the activities of these proteases on mammalian physiology and disease.


Haematologica | 2009

Matriptase-2 (TMPRSS6): a proteolytic regulator of iron homeostasis

Andrew J. Ramsay; John D. Hooper; Alicia R. Folgueras; Gloria Velasco; Carlos López-Otín

The family of membrane anchored serine proteases is increasingly being acknowledged as having critical physiological functions, exemplified recently by the discovery of the iron regulatory role of matriptase-2. This protease, encoded by TMRPSS6, has a specific role in hepcidin inhibition and iron absorption. In this review article, the authors discuss our current knowledge on this new and exciting issue. Maintaining the body’s levels of iron within precise boundaries is essential for normal physiological function. Alterations of these levels below or above the healthy limit lead to a systemic deficiency or overload in iron. The type-two transmembrane serine protease (TTSP), matriptase-2 (also known as TMPRSS6), is attracting significant amounts of interest due to its recently described role in iron homeostasis. The finding of this regulatory role for matriptase-2 was originally derived from the observation that mice deficient in this protease present with anemia due to elevated levels of hepcidin and impaired intestinal iron absorption. Further in vitro analysis has demonstrated that matriptase-2 functions to suppress bone morphogenetic protein stimulation of hepcidin transcription through cell surface proteolytic processing of the bone morphogenetic protein co-receptor hemojuvelin. Consistently, the anemic phenotype of matriptase-2 knockout mice is mirrored in humans with matripase-2 mutations. Currently, 14 patients with iron-refractory iron deficiency anemia (IRIDA) have been reported to harbor various genetic mutations that abrogate matriptase-2 proteolytic activity. In this review, after overviewing the membrane anchored serine proteases, in particular the TTSP family, we summarize the identification and characterization of matriptase-2 and describe its functional relevance in iron metabolism.


Chemistry & Biology | 2009

Substrate-Guided Design of a Potent and Selective Kallikrein-Related Peptidase Inhibitor for Kallikrein 4

Joakim E. Swedberg; Laura V. Nigon; Janet C. Reid; Simon J. de Veer; Carina Walpole; Carson R. Stephens; Terry Walsh; Thomas K. Takayama; John D. Hooper; Judith A. Clements; Ashley M. Buckle; Jonathan M. Harris

Human kallikrein-related peptidase 4 (KLK4/prostase), a trypsin-like serine protease, is a potential target for prostate cancer treatment because of its proteolytic ability to activate many tumorigenic and metastatic pathways including the protease activated receptors (PARs). Currently there are no KLK4-specific small-molecule inhibitors available for therapeutic development. Here we re-engineer the naturally occurring sunflower trypsin inhibitor to selectively block the proteolytic activity of KLK4 and prevent stimulation of PAR activity in a cell-based system. The re-engineered inhibitor was designed using a combination of molecular modeling and sparse matrix substrate screening.


Biochemical Journal | 2003

Mouse matriptase-2: identification, characterization and comparative mRNA expression analysis with mouse hepsin in adult and embryonic tissues

John D. Hooper; Luisa Campagnolo; Goodarz Goodarzi; Tony N. Truong; Heidi Stuhlmann; James P. Quigley

We report the identification and characterization of mouse matriptase-2 (m-matriptase-2), an 811-amino-acid protein composed of an N-terminal cytoplasmic domain, a membrane-spanning domain, two CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domains, three LDLR (low-density-lipoprotein receptor class A) domains and a C-terminal serine-protease domain. All m-matriptase-2 protein domain boundaries corresponded with intron/exon junctions of the encoding gene, which spans approx. 29 kb and comprises 18 exons. Matriptase-2 is highly conserved in human, mouse and rat, with the rat matriptase-2 gene ( r-maltriptase-2 ) predicted to encode transmembrane and soluble isoforms. Western-blot analysis indicated that m-matriptase-2 migrates close to its theoretical molecular mass of 91 kDa, and immunofluorescence analysis was consistent with the proposed surface membrane localization of this protein. Reverse-transcription PCR and in-situ -hybridization analysis indicated that m-matriptase-2 expression overlaps with the distribution of mouse hepsin (m-hepsin, a cell-surface serine protease identified in hepatoma cells) in adult tissues and during embryonic development. In adult tissues both are expressed at highest levels in liver, kidney and uterus. During embryogenesis m-matriptase-2 expression peaked between days 12.5 and 15.5. m-hepsin expression was biphasic, with peaks at day 7.5 to 8.5 and again between days 12.5 and 15.5. In situ hybridization of embryonic tissues indicated abundant expression of both m-matriptase-2 and m-hepsin in the developing liver and at lower levels in developing pharyngo-tympanic tubes. While m-hepsin was detected in the residual embryonic yolk sac and with lower intensity in lung, heart, gastrointestinal tract, developing kidney tubules and epithelium of the oral cavity, m-matriptase-2 was absent in these tissues, but strongly expressed within the nasal cavity by olfactory epithelial cells. Mechanistic insight into the potential role of this new transmembrane serine protease is provided by its novel expression profile in embryonic and adult mouse.

Collaboration


Dive into the John D. Hooper's collaboration.

Top Co-Authors

Avatar

Judith A. Clements

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yaowu He

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

James P. Quigley

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Mark N. Adams

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ying Dong

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janet C. Reid

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Wortmann

Queensland University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge