Carsten Kemena
University of Münster
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carsten Kemena.
Nature | 2012
Michael S. Breen; Carsten Kemena; Peter K. Vlasov; Cedric Notredame; Fyodor A. Kondrashov
The main forces directing long-term molecular evolution remain obscure. A sizable fraction of amino-acid substitutions seem to be fixed by positive selection, but it is unclear to what degree long-term protein evolution is constrained by epistasis, that is, instances when substitutions that are accepted in one genotype are deleterious in another. Here we obtain a quantitative estimate of the prevalence of epistasis in long-term protein evolution by relating data on amino-acid usage in 14 organelle proteins and 2 nuclear-encoded proteins to their rates of short-term evolution. We studied multiple alignments of at least 1,000 orthologues for each of these 16 proteins from species from a diverse phylogenetic background and found that an average site contained approximately eight different amino acids. Thus, without epistasis an average site should accept two-fifths of all possible amino acids, and the average rate of amino-acid substitutions should therefore be about three-fifths lower than the rate of neutral evolution. However, we found that the measured rate of amino-acid substitution in recent evolution is 20 times lower than the rate of neutral evolution and an order of magnitude lower than that expected in the absence of epistasis. These data indicate that epistasis is pervasive throughout protein evolution: about 90 per cent of all amino-acid substitutions have a neutral or beneficial impact only in the genetic backgrounds in which they occur, and must therefore be deleterious in a different background of other species. Our findings show that most amino-acid substitutions have different fitness effects in different species and that epistasis provides the primary conceptual framework to describe the tempo and mode of long-term protein evolution.
Bioinformatics | 2009
Carsten Kemena; Cedric Notredame
This review focuses on recent trends in multiple sequence alignment tools. It describes the latest algorithmic improvements including the extension of consistency-based methods to the problem of template-based multiple sequence alignments. Some results are presented suggesting that template-based methods are significantly more accurate than simpler alternative methods. The validation of existing methods is also discussed at length with the detailed description of recent results and some suggestions for future validation strategies. The last part of the review addresses future challenges for multiple sequence alignment methods in the genomic era, most notably the need to cope with very large sequences, the need to integrate large amounts of experimental data, the need to accurately align non-coding and non-transcribed sequences and finally, the need to integrate many alternative methods and approaches. Contact: [email protected]
Nature Protocols | 2011
Jean-François Taly; Cedrik Magis; Giovanni Bussotti; Jia-Ming Chang; Paolo Di Tommaso; Ionas Erb; Jose Espinosa-Carrasco; Carsten Kemena; Cedric Notredame
T-Coffee (Tree-based consistency objective function for alignment evaluation) is a versatile multiple sequence alignment (MSA) method suitable for aligning most types of biological sequences. The main strength of T-Coffee is its ability to combine third party aligners and to integrate structural (or homology) information when building MSAs. The series of protocols presented here show how the package can be used to multiply align proteins, RNA and DNA sequences. The protein section shows how users can select the most suitable T-Coffee mode for their data set. Detailed protocols include T-Coffee, the default mode, M-Coffee, a meta version able to combine several third party aligners into one, PSI (position-specific iterated)-Coffee, the homology extended mode suitable for remote homologs and Expresso, the structure-based multiple aligner. We then also show how the T-RMSD (tree based on root mean square deviation) option can be used to produce a functionally informative structure-based clustering. RNA alignment procedures are described for using R-Coffee, a mode able to use predicted RNA secondary structures when aligning RNA sequences. DNA alignments are illustrated with Pro-Coffee, a multiple aligner specific of promoter regions. We also present some of the many reformatting utilities bundled with T-Coffee. The package is an open-source freeware available from http://www.tcoffee.org/.
Nature Communications | 2014
Lukas Schrader; Jay W. Kim; Daniel Ence; Aleksey V. Zimin; Antonia Klein; Katharina von Wyschetzki; Tobias Weichselgartner; Carsten Kemena; Johannes Stökl; Eva Schultner; Yannick Wurm; Christopher D. Smith; Mark Yandell; Jürgen Heinze; Jürgen Gadau; Jan Oettler
Adaptation requires genetic variation, but founder populations are generally genetically depleted. Here we sequence two populations of an inbred ant that diverge in phenotype to determine how variability is generated. Cardiocondyla obscurior has the smallest of the sequenced ant genomes and its structure suggests a fundamental role of transposable elements (TEs) in adaptive evolution. Accumulations of TEs (TE islands) comprising 7.18% of the genome evolve faster than other regions with regard to single-nucleotide variants, gene/exon duplications and deletions and gene homology. A non-random distribution of gene families, larvae/adult specific gene expression and signs of differential methylation in TE islands indicate intragenomic differences in regulation, evolutionary rates and coalescent effective population size. Our study reveals a tripartite interplay between TEs, life history and adaptation in an invasive species.
Genome Research | 2014
Dent Earl; Ngan Nguyen; Glenn Hickey; Robert S. Harris; Stephen Fitzgerald; Kathryn Beal; Seledtsov I; Molodtsov; Brian J. Raney; Hiram Clawson; Jaebum Kim; Carsten Kemena; Jia-Ming Chang; Ionas Erb; Poliakov A; Minmei Hou; Javier Herrero; William Kent; Solovyev; Aaron E. Darling; Jian Ma; Cedric Notredame; Michael Brudno; Inna Dubchak; David Haussler; Benedict Paten
Multiple sequence alignments (MSAs) are a prerequisite for a wide variety of evolutionary analyses. Published assessments and benchmark data sets for protein and, to a lesser extent, global nucleotide MSAs are available, but less effort has been made to establish benchmarks in the more general problem of whole-genome alignment (WGA). Using the same model as the successful Assemblathon competitions, we organized a competitive evaluation in which teams submitted their alignments and then assessments were performed collectively after all the submissions were received. Three data sets were used: Two were simulated and based on primate and mammalian phylogenies, and one was comprised of 20 real fly genomes. In total, 35 submissions were assessed, submitted by 10 teams using 12 different alignment pipelines. We found agreement between independent simulation-based and statistical assessments, indicating that there are substantial accuracy differences between contemporary alignment tools. We saw considerable differences in the alignment quality of differently annotated regions and found that few tools aligned the duplications analyzed. We found that many tools worked well at shorter evolutionary distances, but fewer performed competitively at longer distances. We provide all data sets, submissions, and assessment programs for further study and provide, as a resource for future benchmarking, a convenient repository of code and data for reproducing the simulation assessments.
Nature Ecology and Evolution | 2018
Mark C. Harrison; Evelien Jongepier; Hugh M. Robertson; Nicolas Arning; Tristan Bitard-Feildel; Hsu Chao; Christopher P. Childers; Huyen Dinh; HarshaVardhan Doddapaneni; Shannon Dugan; Johannes Gowin; Carolin Greiner; Yi Han; Haofu Hu; Daniel S.T. Hughes; Ann Kathrin Huylmans; Carsten Kemena; Lukas P.M. Kremer; Sandra L. Lee; Alberto Lopez-Ezquerra; Ludovic Mallet; Jose M. Monroy-Kuhn; Annabell Moser; Shwetha C. Murali; Donna M. Muzny; Saria Otani; Maria Dolors Piulachs; Monica Poelchau; Jiaxin Qu; Florentine Schaub
Around 150 million years ago, eusocial termites evolved from within the cockroaches, 50 million years before eusocial Hymenoptera, such as bees and ants, appeared. Here, we report the 2-Gb genome of the German cockroach, Blattella germanica, and the 1.3-Gb genome of the drywood termite Cryptotermes secundus. We show evolutionary signatures of termite eusociality by comparing the genomes and transcriptomes of three termites and the cockroach against the background of 16 other eusocial and non-eusocial insects. Dramatic adaptive changes in genes underlying the production and perception of pheromones confirm the importance of chemical communication in the termites. These are accompanied by major changes in gene regulation and the molecular evolution of caste determination. Many of these results parallel molecular mechanisms of eusocial evolution in Hymenoptera. However, the specific solutions are remarkably different, thus revealing a striking case of convergence in one of the major evolutionary transitions in biological complexity.Eusociality evolved independently in Hymenoptera and in termites. Here, the authors sequence genomes of the German cockroach and a drywood termite and provide insights into the evolutionary signatures of termite eusociality.
Molecular Biology and Evolution | 2015
Chris R. Smith; Sara Helms Cahan; Carsten Kemena; Seán G. Brady; Wei Yang; Erich Bornberg-Bauer; Ti Eriksson; Juergen Gadau; Martin Helmkampf; Dietrich Gotzek; Misato O. Miyakawa; Andrew V. Suarez; Alexander S. Mikheyev
A central goal of biology is to uncover the genetic basis for the origin of new phenotypes. A particularly effective approach is to examine the genomic architecture of species that have secondarily lost a phenotype with respect to their close relatives. In the eusocial Hymenoptera, queens and workers have divergent phenotypes that may be produced via either expression of alternative sets of caste-specific genes and pathways or differences in expression patterns of a shared set of multifunctional genes. To distinguish between these two hypotheses, we investigated how secondary loss of the worker phenotype in workerless ant social parasites impacted genome evolution across two independent origins of social parasitism in the ant genera Pogonomyrmex and Vollenhovia. We sequenced the genomes of three social parasites and their most-closely related eusocial host species and compared gene losses in social parasites with gene expression differences between host queens and workers. Virtually all annotated genes were expressed to some degree in both castes of the host, with most shifting in queen-worker bias across developmental stages. As a result, despite >1 My of divergence from the last common ancestor that had workers, the social parasites showed strikingly little evidence of gene loss, damaging mutations, or shifts in selection regime resulting from loss of the worker caste. This suggests that regulatory changes within a multifunctional genome, rather than sequence differences, have played a predominant role in the evolution of social parasitism, and perhaps also in the many gains and losses of phenotypes in the social insects.
Bioinformatics | 2011
Carsten Kemena; Jean-François Taly; Jens Kleinjung; Cedric Notredame
Motivation: Evaluating alternative multiple protein sequence alignments is an important unsolved problem in Biology. The most accurate way of doing this is to use structural information. Unfortunately, most methods require at least two structures to be embedded in the alignment, a condition rarely met when dealing with standard datasets. Result: We developed STRIKE, a method that determines the relative accuracy of two alternative alignments of the same sequences using a single structure. We validated our methodology on three commonly used reference datasets (BAliBASE, Homestrad and Prefab). Given two alignments, STRIKE manages to identify the most accurate one in 70% of the cases on average. This figure increases to 79% when considering very challenging datasets like the RV11 category of BAliBASE. This discrimination capacity is significantly higher than that reported for other metrics such as Contact Accepted mutation or Blosum. We show that this increased performance results both from a refined definition of the contacts and from the use of an improved contact substitution score. Contact: [email protected] Availability: STRIKE is an open source freeware available from www.tcoffee.org Supplementary Information: Supplementary data are available at Bioinformatics online.
Bioinformatics | 2013
Carsten Kemena; Giovanni Bussotti; Emidio Capriotti; Marc A. Marti-Renom; Cedric Notredame
MOTIVATION Aligning RNAs is useful to search for homologous genes, study evolutionary relationships, detect conserved regions and identify any patterns that may be of biological relevance. Poor levels of conservation among homologs, however, make it difficult to compare RNA sequences, even when considering closely evolutionary related sequences. RESULTS We describe SARA-Coffee, a tertiary structure-based multiple RNA aligner, which has been validated using BRAliDARTS, a new benchmark framework designed for evaluating tertiary structure-based multiple RNA aligners. We provide two methods to measure the capacity of alignments to match corresponding secondary and tertiary structure features. On this benchmark, SARA-Coffee outperforms both regular aligners and those using secondary structure information. Furthermore, we show that on sequences in which <60% of the nucleotides form base pairs, primary sequence methods usually perform better than secondary-structure aware aligners. AVAILABILITY AND IMPLEMENTATION The package and the datasets are available from http://www.tcoffee.org/Projects/saracoffee and http://structure.biofold.org/sara/.
Bioinformatics | 2016
Elias Dohmen; Lukas P.M. Kremer; Erich Bornberg-Bauer; Carsten Kemena
MOTIVATION Genome studies have become cheaper and easier than ever before, due to the decreased costs of high-throughput sequencing and the free availability of analysis software. However, the quality of genome or transcriptome assemblies can vary a lot. Therefore, quality assessment of assemblies and annotations are crucial aspects of genome analysis pipelines. RESULTS We developed DOGMA, a program for fast and easy quality assessment of transcriptome and proteome data based on conserved protein domains. DOGMA measures the completeness of a given transcriptome or proteome and provides information about domain content for further analysis. DOGMA provides a very fast way to do quality assessment within seconds. AVAILABILITY AND IMPLEMENTATION DOGMA is implemented in Python and published under GNU GPL v.3 license. The source code is available on https://ebbgit.uni-muenster.de/domainWorld/DOGMA/ CONTACTS: [email protected] or [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.