Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erich Bornberg-Bauer is active.

Publication


Featured researches published by Erich Bornberg-Bauer.


Nature | 2014

The genome of Eucalyptus grandis

Alexander Andrew Myburg; Dario Grattapaglia; Gerald A. Tuskan; Uffe Hellsten; Richard D. Hayes; Jane Grimwood; Jerry Jenkins; Erika Lindquist; Hope Tice; Diane Bauer; David Goodstein; Inna Dubchak; Alexandre Poliakov; Eshchar Mizrachi; Anand Raj Kumar Kullan; Steven G. Hussey; Desre Pinard; Karen Van der Merwe; Pooja Singh; Ida Van Jaarsveld; Orzenil Bonfim Silva-Junior; Roberto C. Togawa; Marilia R. Pappas; Danielle A. Faria; Carolina Sansaloni; Cesar D. Petroli; Xiaohan Yang; Priya Ranjan; Timothy J. Tschaplinski; Chu-Yu Ye

Eucalypts are the world’s most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.


PLOS Genetics | 2011

The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle

Garret Suen; Clotilde Teiling; Lewyn Li; Carson Holt; Ehab Abouheif; Erich Bornberg-Bauer; Pascal Bouffard; Eric J. Caldera; Elizabeth Cash; Amy Cavanaugh; Olgert Denas; Eran Elhaik; Marie-Julie Favé; Jürgen Gadau; Joshua D. Gibson; Dan Graur; Kirk J. Grubbs; Darren E. Hagen; Timothy T. Harkins; Martin Helmkampf; Hao Hu; Brian R. Johnson; Jay Joong Kim; Sarah E. Marsh; Joseph A. Moeller; Monica Munoz-Torres; Marguerite C. Murphy; Meredith C. Naughton; Surabhi Nigam; Rick P. Overson

Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colonys primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ants lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host–microbe symbioses.


Trends in Biochemical Sciences | 2008

Arrangements in the modular evolution of proteins

Andrew D. Moore; Åsa K. Björklund; Diana Ekman; Erich Bornberg-Bauer; Arne Elofsson

It has been known for the last couple of decades that proteins evolve partly through rearrangements of larger fragments, typically domains. These units are considered the basic modules of protein structure, evolution and function. In the last few years, the analysis of protein-domain rearrangements has provided us with functional and evolutionary insights and has aided improved functional predictions and domain assignments to previously uncharacterised genes and proteins. Although some mechanisms that govern modular rearrangements of protein domains have been uncovered, such as the addition or deletion of a single N- or C-terminal domain, much is still unknown about the genetics behind these arrangements.


Nature Communications | 2014

Molecular traces of alternative social organization in a termite genome

Nicolas Terrapon; Cai Li; Hugh M. Robertson; Lu Ji; Xuehong Meng; Warren Booth; Zhensheng Chen; Christopher P. Childers; Karl M. Glastad; Kaustubh Gokhale; Johannes Gowin; Wulfila Gronenberg; Russell A. Hermansen; Haofu Hu; Brendan G. Hunt; Ann Kathrin Huylmans; Sayed M.S. Khalil; Robert D. Mitchell; Monica Munoz-Torres; Julie A. Mustard; Hailin Pan; Justin T. Reese; Michael E. Scharf; Fengming Sun; Heiko Vogel; Jin Xiao; Wei Yang; Zhikai Yang; Zuoquan Yang; Jiajian Zhou

Although eusociality evolved independently within several orders of insects, research into the molecular underpinnings of the transition towards social complexity has been confined primarily to Hymenoptera (for example, ants and bees). Here we sequence the genome and stage-specific transcriptomes of the dampwood termite Zootermopsis nevadensis (Blattodea) and compare them with similar data for eusocial Hymenoptera, to better identify commonalities and differences in achieving this significant transition. We show an expansion of genes related to male fertility, with upregulated gene expression in male reproductive individuals reflecting the profound differences in mating biology relative to the Hymenoptera. For several chemoreceptor families, we show divergent numbers of genes, which may correspond to the more claustral lifestyle of these termites. We also show similarities in the number and expression of genes related to caste determination mechanisms. Finally, patterns of DNA methylation and alternative splicing support a hypothesized epigenetic regulation of caste differentiation.


Extremophiles | 2008

Metabolism of halophilic archaea.

Michaela Falb; Kerstin Müller; Lisa Königsmaier; Patrick Horn; Susanne von Gronau; Orland Gonzalez; Friedhelm Pfeiffer; Erich Bornberg-Bauer; Dieter Oesterhelt

In spite of their common hypersaline environment, halophilic archaea are surprisingly different in their nutritional demands and metabolic pathways. The metabolic diversity of halophilic archaea was investigated at the genomic level through systematic metabolic reconstruction and comparative analysis of four completely sequenced species: Halobacterium salinarum, Haloarcula marismortui, Haloquadratum walsbyi, and the haloalkaliphile Natronomonas pharaonis. The comparative study reveals different sets of enzyme genes amongst halophilic archaea, e.g. in glycerol degradation, pentose metabolism, and folate synthesis. The carefully assessed metabolic data represent a reliable resource for future system biology approaches as it also links to current experimental data on (halo)archaea from the literature.


Immunobiology | 2008

Specificity of the innate immune system and diversity of C-type lectin domain (CTLD) proteins in the nematode Caenorhabditis elegans

Hinrich Schulenburg; Marc P. Hoeppner; January Weiner; Erich Bornberg-Bauer

The nematode Caenorhabditis elegans has become an important model for the study of innate immunity. Its immune system is based on several signaling cascades, including a Toll-like receptor, three mitogen-activated protein kinases (MAPK), one transforming growth factor-beta (TGF-beta), the insulin-like receptor (ILR), and the programmed cell death (PCD) pathway. Furthermore, it also involves C-type lectin domain- (CTLD) containing proteins as well as several classes of antimicrobial effectors such as lysozymes. Almost all components of the nematode immune system have homologs in other organisms, including humans, and are therefore likely of ancient evolutionary origin. At the same time, most of them are part of a general stress response, suggesting that they only provide unspecific defense. In the current article, we re-evaluate this suggestion and explore the level of specificity in C. elegans innate immunity, i.e. the nematodes ability to mount a distinct defense response towards different pathogens. We draw particular attention to the CTLD proteins, which are abundant in the nematode genome (278 genes) and many of which show a pathogen-specific response during infection. Specificity may also be achieved through the differential activation of antimicrobial genes, distinct functions of the immunity signaling cascades as well as signal integration across pathways. Taken together, our evaluation reveals high potential for immune specificity in C. elegans that may enhance the nematodes ability to fight off pathogens.


Biophysical Journal | 2000

Switching from simple to complex oscillations in calcium signaling.

Ursula Kummer; L.F. Olsen; C.J. Dixon; A.K. Green; Erich Bornberg-Bauer; G. Baier

We present a new model for calcium oscillations based on experiments in hepatocytes. The model considers feedback inhibition on the initial agonist receptor complex by calcium and activated phospholipase C, as well as receptor type-dependent self-enhanced behavior of the activated G(alpha) subunit. It is able to show simple periodic oscillations and periodic bursting, and it is the first model to display chaotic bursting in response to agonist stimulations. Moreover, our model offers a possible explanation for the differences in dynamic behavior observed in response to different agonists in hepatocytes.


Nature | 2016

The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea

Jeanine L. Olsen; Pierre Rouzé; Bram Verhelst; Yao-Cheng Lin; Till Bayer; Jonas Collén; Emanuela Dattolo; Emanuele De Paoli; Simon M. Dittami; Florian Maumus; Gurvan Michel; Anna R. Kersting; Chiara Lauritano; Rolf Lohaus; Mats Töpel; Thierry Tonon; Kevin Vanneste; Mojgan Amirebrahimi; Janina Brakel; Christoffer Boström; Mansi Chovatia; Jane Grimwood; Jerry Jenkins; Alexander Jueterbock; Amy Mraz; Wytze T. Stam; Hope Tice; Erich Bornberg-Bauer; Pamela J. Green; Gareth A. Pearson

Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants.


BMC Genomics | 2011

Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing

Susanne U. Franssen; Roshan P. Shrestha; Andrea Bräutigam; Erich Bornberg-Bauer; Andreas P. M. Weber

BackgroundThe garden pea, Pisum sativum, is among the best-investigated legume plants and of significant agro-commercial relevance. Pisum sativum has a large and complex genome and accordingly few comprehensive genomic resources exist.ResultsWe analyzed the pea transcriptome at the highest possible amount of accuracy by current technology. We used next generation sequencing with the Roche/454 platform and evaluated and compared a variety of approaches, including diverse tissue libraries, normalization, alternative sequencing technologies, saturation estimation and diverse assembly strategies. We generated libraries from flowers, leaves, cotyledons, epi- and hypocotyl, and etiolated and light treated etiolated seedlings, comprising a total of 450 megabases. Libraries were assembled into 324,428 unigenes in a first pass assembly.A second pass assembly reduced the amount to 81,449 unigenes but caused a significant number of chimeras. Analyses of the assemblies identified the assembly step as a major possibility for improvement. By recording frequencies of Arabidopsis orthologs hit by randomly drawn reads and fitting parameters of the saturation curve we concluded that sequencing was exhaustive. For leaf libraries we found normalization allows partial recovery of expression strength aside the desired effect of increased coverage. Based on theoretical and biological considerations we concluded that the sequence reads in the database tagged the vast majority of transcripts in the aerial tissues. A pathway representation analysis showed the merits of sampling multiple aerial tissues to increase the number of tagged genes. All results have been made available as a fully annotated database in fasta format.ConclusionsWe conclude that the approach taken resulted in a high quality - dataset which serves well as a first comprehensive reference set for the model legume pea. We suggest future deep sequencing transcriptome projects of species lacking a genomics backbone will need to concentrate mainly on resolving the issues of redundancy and paralogy during transcriptome assembly.


Protein Science | 2012

The interface of protein structure, protein biophysics, and molecular evolution

David A. Liberles; Sarah A. Teichmann; Ivet Bahar; Ugo Bastolla; Jesse D. Bloom; Erich Bornberg-Bauer; Lucy J. Colwell; A. P. Jason de Koning; Nikolay V. Dokholyan; Julian J. Echave; Arne Elofsson; Dietlind L. Gerloff; Richard A. Goldstein; Johan A. Grahnen; Mark T. Holder; Clemens Lakner; Nicholas Lartillot; Simon C. Lovell; Gavin J. P. Naylor; Tina Perica; David D. Pollock; Tal Pupko; Lynne Regan; Andrew J. Roger; Nimrod D. Rubinstein; Eugene I. Shakhnovich; Kimmen Sjölander; Shamil R. Sunyaev; Ashley I. Teufel; Jeffrey L. Thorne

Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state‐of‐the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high‐throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction.

Collaboration


Dive into the Erich Bornberg-Bauer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thorsten B. H. Reusch

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jenny Gu

University of Münster

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philine G. D. Feulner

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge