Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carsten Købler is active.

Publication


Featured researches published by Carsten Købler.


Toxicology and Applied Pharmacology | 2015

MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs

Sarah S. Poulsen; Anne T. Saber; Andrew Williams; Ole Andersen; Carsten Købler; Rambabu Atluri; Maria E. Pozzebon; Stefano P. Mucelli; Monica Simion; David Rickerby; Alicja Mortensen; Petra Jackson; Zdenka O. Kyjovska; Kristian Mølhave; Nicklas Raun Jacobsen; Keld Alstrup Jensen; Carole L. Yauk; Håkan Wallin; Sabina Halappanavar; Ulla Vogel

Multi-walled carbon nanotubes (MWCNTs) are an inhomogeneous group of nanomaterials that vary in lengths, shapes and types of metal contamination, which makes hazard evaluation difficult. Here we present a toxicogenomic analysis of female C57BL/6 mouse lungs following a single intratracheal instillation of 0, 18, 54 or 162 μg/mouse of a small, curled (CNT(Small), 0.8 ± 0.1 μm in length) or large, thick MWCNT (CNT(Large), 4 ± 0.4 μm in length). The two MWCNTs were extensively characterized by SEM and TEM imaging, thermogravimetric analysis, and Brunauer-Emmett-Teller surface area analysis. Lung tissues were harvested 24h, 3 days and 28 days post-exposure. DNA microarrays were used to analyze gene expression, in parallel with analysis of bronchoalveolar lavage fluid, lung histology, DNA damage (comet assay) and the presence of reactive oxygen species (dichlorodihydrofluorescein assay), to profile and characterize related pulmonary endpoints. Overall changes in global transcription following exposure to CNT(Small) or CNT(Large) were similar. Both MWCNTs elicited strong acute phase and inflammatory responses that peaked at day 3, persisted up to 28 days, and were characterized by increased cellular influx in bronchoalveolar lavage fluid, interstitial pneumonia and gene expression changes. However, CNT(Large) elicited an earlier onset of inflammation and DNA damage, and induced more fibrosis and a unique fibrotic gene expression signature at day 28, compared to CNT(Small). The results indicate that the extent of change at the molecular level during early response phases following an acute exposure is greater in mice exposed to CNT(Large), which may eventually lead to the different responses observed at day 28.


Small | 2013

Fibroblasts Cultured on Nanowires Exhibit Low Motility, Impaired Cell Division, and DNA Damage

Henrik Persson; Carsten Købler; Kristian Mølhave; Lars Samuelson; Jonas O. Tegenfeldt; Stina Oredsson; Christelle N. Prinz

Nanowires are commonly used as tools for interfacing living cells, acting as biomolecule-delivery vectors or electrodes. It is generally assumed that the small size of the nanowires ensures a minimal cellular perturbation, yet the effects of nanowires on cell migration and proliferation remain largely unknown. Fibroblast behaviour on vertical nanowire arrays is investigated, and it is shown that cell motility and proliferation rate are reduced on nanowires. Fibroblasts cultured on long nanowires exhibit failed cell division, DNA damage, increased ROS content and respiration. Using focused ion beam milling and scanning electron microscopy, highly curved but intact nuclear membranes are observed, showing no direct contact between the nanowires and the DNA. The nanowires possibly induce cellular stress and high respiration rates, which trigger the formation of ROS, which in turn results in DNA damage. These results are important guidelines to the design and interpretation of experiments involving nanowire-based transfection and electrical characterization of living cells.


PLOS ONE | 2013

Transcriptomic Analysis Reveals Novel Mechanistic Insight into Murine Biological Responses to Multi-Walled Carbon Nanotubes in Lungs and Cultured Lung Epithelial Cells

Sarah S. Poulsen; Nicklas Raun Jacobsen; Sarah Labib; Dongmei Wu; Mainul Husain; Andrew Williams; Jesper P. Bøgelund; Ole Andersen; Carsten Købler; Kristian Mølhave; Zdenka O. Kyjovska; Anne T. Saber; Håkan Wallin; Carole L. Yauk; Ulla Vogel; Sabina Halappanavar

There is great interest in substituting animal work with in vitro experimentation in human health risk assessment; however, there are only few comparisons of in vitro and in vivo biological responses to engineered nanomaterials. We used high-content genomics tools to compare in vivo pulmonary responses of multiwalled carbon nanotubes (MWCNT) to those in vitro in cultured lung epithelial cells (FE1) at the global transcriptomic level. Primary size, surface area and other properties of MWCNT- XNRI -7 (Mitsui7) were characterized using DLS, SEM and TEM. Mice were exposed via a single intratracheal instillation to 18, 54, or 162 μg of Mitsui7/mouse. FE1 cells were incubated with 12.5, 25 and 100 μg/ml of Mitsui7. Tissue and cell samples were collected at 24 hours post-exposure. DNA microarrays were employed to establish mechanistic differences and similarities between the two models. Microarray results were confirmed using gene-specific RT-qPCR. Bronchoalveolar lavage (BAL) fluid was assessed for indications of inflammation in vivo. A strong dose-dependent activation of acute phase and inflammation response was observed in mouse lungs reflective mainly of an inflammatory response as observed in BAL. In vitro, a wide variety of core cellular functions were affected including transcription, cell cycle, and cellular growth and proliferation. Oxidative stress, fibrosis and inflammation processes were altered in both models. Although there were similarities observed between the two models at the pathway-level, the specific genes altered under these pathways were different, suggesting that the underlying mechanisms of responses are different in cells in culture and the lung tissue. Our results suggest that careful consideration should be given in selecting relevant endpoints when substituting animal with in vitro testing.


PLOS ONE | 2013

Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM

Rafal Wierzbicki; Carsten Købler; Mikkel Jensen; Joanna M. Łopacińska; Michael Stenbæk Schmidt; Maciej Skolimowski; Fabien Abeille; Klaus Qvortrup; Kristian Mølhave

Using high resolution focused ion beam scanning electron microscopy (FIB-SEM) we study the details of cell-nanostructure interactions using serial block face imaging. 3T3 Fibroblast cellular monolayers are cultured on flat glass as a control surface and on two types of nanostructured scaffold substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition and image post-processing were specifically optimised for cellular monolayers cultured on nanostructured substrates. Cells display a wide range of interactions with the nanostructures depending on the surface morphology, but also greatly varying from one cell to another on the same substrate, illustrating a wide phenotypic variability. Depending on the substrate and cell, we observe that cells could for instance: break the nanowires and engulf them, flatten the nanowires or simply reside on top of them. Given the complexity of interactions, we have categorised our observations and created an overview map. The results demonstrate that detailed nanoscale resolution images are required to begin understanding the wide variety of individual cells’ interactions with a structured substrate. The map will provide a framework for light microscopy studies of such interactions indicating what modes of interactions must be considered.


Food Chemistry | 2015

In-house validation of a method for determination of silver nanoparticles in chicken meat based on asymmetric flow field-flow fractionation and inductively coupled plasma mass spectrometric detection.

Katrin Loeschner; Jana Navratilova; Ringo Grombe; T Linsinger; Carsten Købler; Kristian Mølhave; Erik Huusfeldt Larsen

Nanomaterials are increasingly used in food production and packaging, and validated methods for detection of nanoparticles (NPs) in foodstuffs need to be developed both for regulatory purposes and product development. Asymmetric flow field-flow fractionation with inductively coupled plasma mass spectrometric detection (AF(4)-ICP-MS) was applied for quantitative analysis of silver nanoparticles (AgNPs) in a chicken meat matrix following enzymatic sample preparation. For the first time an analytical validation of nanoparticle detection in a food matrix by AF(4)-ICP-MS has been carried out and the results showed repeatable and intermediately reproducible determination of AgNP mass fraction and size. The findings demonstrated the potential of AF(4)-ICP-MS for quantitative analysis of NPs in complex food matrices for use in food monitoring and control. The accurate determination of AgNP size distribution remained challenging due to the lack of certified size standards.


PLOS ONE | 2015

Time-Dependent Subcellular Distribution and Effects of Carbon Nanotubes in Lungs of Mice

Carsten Købler; Sarah S. Poulsen; Anne T. Saber; Nicklas Raun Jacobsen; Håkan Wallin; Carole L. Yauk; Sabina Halappanavar; Ulla Vogel; Klaus Qvortrup; Kristian Mølhave

Background and Methods Pulmonary deposited carbon nanotubes (CNTs) are cleared very slowly from the lung, but there is limited information on how CNTs interact with the lung tissue over time. To address this, three different multiwalled CNTs were intratracheally instilled into female C57BL/6 mice: one short (850 nm) and tangled, and two longer (4 μm and 5.7 μm) and thicker. We assessed the cellular interaction with these CNTs using transmission electron microscopy (TEM) 1, 3 and 28 days after instillation. Results TEM analysis revealed that the three CNTs followed the same overall progression pattern over time. Initially, CNTs were taken up either by a diffusion mechanism or via endocytosis. Then CNTs were agglomerated in vesicles in macrophages. Lastly, at 28 days post-exposure, evidence suggesting CNT escape from vesicle enclosures were found. The longer and thicker CNTs more often perturbed and escaped vesicular enclosures in macrophages compared to the smaller CNTs. Bronchoalveolar lavage (BAL) showed that the CNT exposure induced both an eosinophil influx and also eosinophilic crystalline pneumonia. Conclusion Two very different types of multiwalled CNTs had very similar pattern of cellular interactions in lung tissue, with the longer and thicker CNTs resulting in more severe effects in terms of eosinophil influx and incidence of eosinophilic crystalline pneumonia (ECP).


Ultramicroscopy | 2013

In-situ SEM microchip setup for electrochemical experiments with water based solutions.

Eric Jensen; Carsten Købler; Palle Skovhus Jensen; Kristian Mølhave

Studying electrochemical (EC) processes with electron microscopes offers the possibility of achieving much higher resolution imaging of nanoscale processes in real time than with optical microscopes. We have developed a vacuum sealed liquid sample electrochemical cell with electron transparent windows, microelectrodes and an electrochemical reference electrode. The system, called the EC-SEM Cell, is used to study electrochemical reactions in liquid with a standard scanning electron microscope (SEM). The central component is a microfabricated chip with a thin (50 nm) Si-rich silicon nitride (SiNx) window with lithographically defined platinum microelectrodes. We show here the design principles of the EC-SEM system, its detailed construction and how it has been used to perform a range of EC experiments, two of which are presented here. It is shown that the EC-SEM Cell can survive extended in-situ EC experiments. Before the EC experiments we characterized the beam current being deposited in the liquid as this will affect the experiments. The first EC experiment shows the influence of the electron-beam (e-beam) on a nickel solution by inducing electroless nickel deposition on the window when increasing the current density from the e-beam. The second experiment shows electrolysis in EC-SEM Cell, induced by the built-in electrodes.


Proteomics | 2016

Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic.

Hasan Ufuk Celebioglu; Morten Ejby; Avishek Majumder; Carsten Købler; Yong Jun Goh; Kristian Thorsen; Bjarne Schmidt; Sarah O'Flaherty; Maher Abou Hachem; Sampo J. Lahtinen; Susanne Jacobsen; Todd R. Klaenhammer; Susanne Brix; Kristian Mølhave; Birte Svensson

Whole cell and surface proteomes were analyzed together with adhesive properties of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) grown on the emerging prebiotic raffinose, exemplifying a synbiotic. Adhesion of NCFM to mucin and intestinal HT‐29 cells increased three‐fold after culture with raffinose versus glucose, as also visualized by scanning electron microscopy. Comparative proteomics using 2D‐DIGE showed 43 unique proteins to change in relative abundance in whole cell lysates from NCFM grown on raffinose compared to glucose. Furthermore, 14 unique proteins in 18 spots of the surface subproteome underwent changes identified by differential 2DE, including elongation factor G, thermostable pullulanase, and phosphate starvation inducible stress‐related protein increasing in a range of +2.1 − +4.7 fold. By contrast five known moonlighting proteins decreased in relative abundance by up to −2.4 fold. Enzymes involved in raffinose catabolism were elevated in the whole cell proteome; α‐galactosidase (+13.9 fold); sucrose phosphorylase (+5.4 fold) together with metabolic enzymes from the Leloir pathway for galactose utilization and the glycolysis; β‐galactosidase (+5.7 fold); galactose (+2.9/+3.1 fold) and fructose (+2.8 fold) kinases. The insights at the molecular and cellular levels contributed to the understanding of the interplay of a synbiotic composed of NCFM and raffinose with the host.


Environmental Toxicology and Chemistry | 2017

Not all that glitters is gold-Electron microscopy study on uptake of gold nanoparticles in Daphnia Magna and Related Artefacts

Louise Helene Søgaard Jensen; Lars Michael Skjolding; Amalie Thit; Sara Nørgaard Sørensen; Carsten Købler; Kristian Mølhave; Anders Baun

Increasing use of engineered nanoparticles has led to extensive research into their potential hazards to the environment and human health. Cellular uptake from the gut is sparsely investigated, and microscopy techniques applied for uptake studies can result in misinterpretations. Various microscopy techniques were used to investigate internalization of 10-nm gold nanoparticles in Daphnia magna gut lumen and gut epithelial cells following 24-h exposure and outline potential artifacts (i.e., high-contrast precipitates from sample preparation related to these techniques). Light sheet microscopy confirmed accumulation of gold nanoparticles in the gut lumen. Scanning transmission electron microscopy and elemental analysis revealed gold nanoparticles attached to the microvilli of gut cells. Interestingly, the peritrophic membrane appeared to act as a semipermeable barrier between the lumen and the gut epithelium, permitting only single particles through. Structures resembling nanoparticles were also observed inside gut cells. Elemental analysis could not verify these to be gold, and they were likely artifacts from the preparation, such as osmium and iron. Importantly, gold nanoparticles were found inside holocrine cells with disrupted membranes. Thus, false-positive observations of nanoparticle internalization may result from either preparation artifacts or mistaking disrupted cells for intact cells. These findings emphasize the importance of cell integrity and combining elemental analysis with the localization of internalized nanoparticles using transmission electron microscopy. Environ Toxicol Chem 2017;36:1503-1509.


Toxicology and Applied Pharmacology | 2018

Corrigendum to “MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs” [Toxicol. Appl. Pharmacol., 284 (2015) 16–32]

Sarah S. Poulsen; Anne T. Saber; Andrew Williams; Ole Andersen; Carsten Købler; Rambabu Atluri; Maria E. Pozzebon; Stefano P. Mucelli; Monica Simion; David Rickerby; Alicja Mortensen; Petra Jackson; Zdenka O. Kyjovska; Kristian Mølhave; Nicklas Raun Jacobsen; Keld Alstrup Jensen; Carole L. Yauk; Håkan Wallin; Sabina Halappanavar; Ulla Vogel

inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs” [Toxicol. Appl. Pharmacol., 284 (2015) 16–32] DTU Orbit (07/11/2019) Corrigendum to “MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs” [Toxicol. Appl. Pharmacol., 284 (2015) 16–32]

Collaboration


Dive into the Carsten Købler's collaboration.

Top Co-Authors

Avatar

Kristian Mølhave

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Ulla Vogel

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Anne T. Saber

National Institute of Occupational Health

View shared research outputs
Top Co-Authors

Avatar

Håkan Wallin

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Klaus Qvortrup

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Nicklas Raun Jacobsen

National Institute of Occupational Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Huusfeldt Larsen

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge