Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah S. Poulsen is active.

Publication


Featured researches published by Sarah S. Poulsen.


Toxicology and Applied Pharmacology | 2015

MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs

Sarah S. Poulsen; Anne T. Saber; Andrew Williams; Ole Andersen; Carsten Købler; Rambabu Atluri; Maria E. Pozzebon; Stefano P. Mucelli; Monica Simion; David Rickerby; Alicja Mortensen; Petra Jackson; Zdenka O. Kyjovska; Kristian Mølhave; Nicklas Raun Jacobsen; Keld Alstrup Jensen; Carole L. Yauk; Håkan Wallin; Sabina Halappanavar; Ulla Vogel

Multi-walled carbon nanotubes (MWCNTs) are an inhomogeneous group of nanomaterials that vary in lengths, shapes and types of metal contamination, which makes hazard evaluation difficult. Here we present a toxicogenomic analysis of female C57BL/6 mouse lungs following a single intratracheal instillation of 0, 18, 54 or 162 μg/mouse of a small, curled (CNT(Small), 0.8 ± 0.1 μm in length) or large, thick MWCNT (CNT(Large), 4 ± 0.4 μm in length). The two MWCNTs were extensively characterized by SEM and TEM imaging, thermogravimetric analysis, and Brunauer-Emmett-Teller surface area analysis. Lung tissues were harvested 24h, 3 days and 28 days post-exposure. DNA microarrays were used to analyze gene expression, in parallel with analysis of bronchoalveolar lavage fluid, lung histology, DNA damage (comet assay) and the presence of reactive oxygen species (dichlorodihydrofluorescein assay), to profile and characterize related pulmonary endpoints. Overall changes in global transcription following exposure to CNT(Small) or CNT(Large) were similar. Both MWCNTs elicited strong acute phase and inflammatory responses that peaked at day 3, persisted up to 28 days, and were characterized by increased cellular influx in bronchoalveolar lavage fluid, interstitial pneumonia and gene expression changes. However, CNT(Large) elicited an earlier onset of inflammation and DNA damage, and induced more fibrosis and a unique fibrotic gene expression signature at day 28, compared to CNT(Small). The results indicate that the extent of change at the molecular level during early response phases following an acute exposure is greater in mice exposed to CNT(Large), which may eventually lead to the different responses observed at day 28.


Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology | 2014

Particle-induced pulmonary acute phase response may be the causal link between particle inhalation and cardiovascular disease

Anne T. Saber; Nicklas Raun Jacobsen; Petra Jackson; Sarah S. Poulsen; Zdenka O. Kyjovska; Sabina Halappanavar; Carole L. Yauk; Håkan Wallin; Ulla Vogel

Inhalation of ambient and workplace particulate air pollution is associated with increased risk of cardiovascular disease. One proposed mechanism for this association is that pulmonary inflammation induces a hepatic acute phase response, which increases risk of cardiovascular disease. Induction of the acute phase response is intimately linked to risk of cardiovascular disease as shown in both epidemiological and animal studies. Indeed, blood levels of acute phase proteins, such as C-reactive protein and serum amyloid A, are independent predictors of risk of cardiovascular disease in prospective epidemiological studies. In this review, we present and review emerging evidence that inhalation of particles (e.g., air diesel exhaust particles and nanoparticles) induces a pulmonary acute phase response, and propose that this induction constitutes the causal link between particle inhalation and risk of cardiovascular disease. Increased levels of acute phase mRNA and proteins in lung tissues, bronchoalveolar lavage fluid and plasma clearly indicate pulmonary acute phase response following pulmonary deposition of different kinds of particles including diesel exhaust particles, nanoparticles, and carbon nanotubes. The pulmonary acute phase response is dose-dependent and long lasting. Conversely, the hepatic acute phase response is reduced relative to lung or entirely absent. We also provide evidence that pulmonary inflammation, as measured by neutrophil influx, is a predictor of the acute phase response and that the total surface area of deposited particles correlates with the pulmonary acute phase response. We discuss the implications of these findings in relation to occupational exposure to nanoparticles. How to cite this article: WIREs Nanomed Nanobiotechnol 2014, 6:517–531. doi: 10.1002/wnan.1279


PLOS ONE | 2013

Transcriptomic Analysis Reveals Novel Mechanistic Insight into Murine Biological Responses to Multi-Walled Carbon Nanotubes in Lungs and Cultured Lung Epithelial Cells

Sarah S. Poulsen; Nicklas Raun Jacobsen; Sarah Labib; Dongmei Wu; Mainul Husain; Andrew Williams; Jesper P. Bøgelund; Ole Andersen; Carsten Købler; Kristian Mølhave; Zdenka O. Kyjovska; Anne T. Saber; Håkan Wallin; Carole L. Yauk; Ulla Vogel; Sabina Halappanavar

There is great interest in substituting animal work with in vitro experimentation in human health risk assessment; however, there are only few comparisons of in vitro and in vivo biological responses to engineered nanomaterials. We used high-content genomics tools to compare in vivo pulmonary responses of multiwalled carbon nanotubes (MWCNT) to those in vitro in cultured lung epithelial cells (FE1) at the global transcriptomic level. Primary size, surface area and other properties of MWCNT- XNRI -7 (Mitsui7) were characterized using DLS, SEM and TEM. Mice were exposed via a single intratracheal instillation to 18, 54, or 162 μg of Mitsui7/mouse. FE1 cells were incubated with 12.5, 25 and 100 μg/ml of Mitsui7. Tissue and cell samples were collected at 24 hours post-exposure. DNA microarrays were employed to establish mechanistic differences and similarities between the two models. Microarray results were confirmed using gene-specific RT-qPCR. Bronchoalveolar lavage (BAL) fluid was assessed for indications of inflammation in vivo. A strong dose-dependent activation of acute phase and inflammation response was observed in mouse lungs reflective mainly of an inflammatory response as observed in BAL. In vitro, a wide variety of core cellular functions were affected including transcription, cell cycle, and cellular growth and proliferation. Oxidative stress, fibrosis and inflammation processes were altered in both models. Although there were similarities observed between the two models at the pathway-level, the specific genes altered under these pathways were different, suggesting that the underlying mechanisms of responses are different in cells in culture and the lung tissue. Our results suggest that careful consideration should be given in selecting relevant endpoints when substituting animal with in vitro testing.


Toxicology and Applied Pharmacology | 2015

Changes in cholesterol homeostasis and acute phase response link pulmonary exposure to multi-walled carbon nanotubes to risk of cardiovascular disease.

Sarah S. Poulsen; Anne T. Saber; Alicja Mortensen; Józef Szarek; Dongmei Wu; Andrew Williams; Ole Andersen; Nicklas Raun Jacobsen; Carole L. Yauk; Håkan Wallin; Sabina Halappanavar; Ulla Vogel

Adverse lung effects following pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) are well documented in rodents. However, systemic effects are less understood. Epidemiological studies have shown increased cardiovascular disease risk after pulmonary exposure to airborne particles, which has led to concerns that inhalation exposure to MWCNTs might pose similar risks. We analyzed parameters related to cardiovascular disease, including plasma acute phase response (APR) proteins and plasma lipids, in female C57BL/6 mice exposed to a single intratracheal instillation of 0, 18, 54 or 162μg/mouse of small, entangled (CNTSmall, 0.8±0.1μm long) or large, thick MWCNTs (CNTLarge, 4±0.4μm long). Liver tissues and plasma were harvested 1, 3 and 28days post-exposure. In addition, global hepatic gene expression, hepatic cholesterol content and liver histology were used to assess hepatic effects. The two MWCNTs induced similar systemic responses despite their different physicochemical properties. APR proteins SAA3 and haptoglobin, plasma total cholesterol and low-density/very low-density lipoprotein were significantly increased following exposure to either MWCNTs. Plasma SAA3 levels correlated strongly with pulmonary Saa3 levels. Analysis of global gene expression revealed perturbation of the same biological processes and pathways in liver, including the HMG-CoA reductase pathway. Both MWCNTs induced similar histological hepatic changes, with a tendency towards greater response following CNTLarge exposure. Overall, we show that pulmonary exposure to two different MWCNTs induces similar systemic and hepatic responses, including changes in plasma APR, lipid composition, hepatic gene expression and liver morphology. The results link pulmonary exposure to MWCNTs with risk of cardiovascular disease.


Nanotoxicology | 2016

Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity

Sarah S. Poulsen; Petra Jackson; Kirsten I. Kling; Kristina Bram Knudsen; Vidar Skaug; Zdenka O. Kyjovska; Birthe Lykke Thomsen; Per Axel Clausen; Rambabu Atluri; Trine Berthing; Stefan Bengtson; Henrik Wolff; Keld Alstrup Jensen; Håkan Wallin; Ulla Vogel

Abstract Lung deposition of multi-walled carbon nanotubes (MWCNT) induces pulmonary toxicity. Commercial MWCNT vary greatly in physicochemical properties and consequently in biological effects. To identify determinants of MWCNT-induced toxicity, we analyzed the effects of pulmonary exposure to 10 commercial MWCNT (supplied in three groups of different dimensions, with one pristine and two/three surface modified in each group). We characterized morphology, chemical composition, surface area and functionalization levels. MWCNT were deposited in lungs of female C57BL/6J mice by intratracheal instillation of 0, 6, 18 or 54 μg/mouse. Pulmonary inflammation (neutrophil influx in bronchoalveolar lavage (BAL)) and genotoxicity were determined on day 1, 28 or 92. Histopathology of the lungs was performed on day 28 and 92. All MWCNT induced similar histological changes. Lymphocytic aggregates were detected for all MWCNT on day 28 and 92. Using adjusted, multiple regression analyses, inflammation and genotoxicity were related to dose, time and physicochemical properties. The specific surface area (BET) was identified as a positive predictor of pulmonary inflammation on all post-exposure days. In addition, length significantly predicted pulmonary inflammation, whereas surface oxidation (–OH and –COOH) was predictor of lowered inflammation on day 28. BET surface area, and therefore diameter, significantly predicted genotoxicity in BAL fluid cells and lung tissue such that lower BET surface area or correspondingly larger diameter was associated with increased genotoxicity. This study provides information on possible toxicity-driving physicochemical properties of MWCNT. The results may contribute to safe-by-design manufacturing of MWCNT, thereby minimizing adverse effects.


PLOS ONE | 2015

Time-Dependent Subcellular Distribution and Effects of Carbon Nanotubes in Lungs of Mice

Carsten Købler; Sarah S. Poulsen; Anne T. Saber; Nicklas Raun Jacobsen; Håkan Wallin; Carole L. Yauk; Sabina Halappanavar; Ulla Vogel; Klaus Qvortrup; Kristian Mølhave

Background and Methods Pulmonary deposited carbon nanotubes (CNTs) are cleared very slowly from the lung, but there is limited information on how CNTs interact with the lung tissue over time. To address this, three different multiwalled CNTs were intratracheally instilled into female C57BL/6 mice: one short (850 nm) and tangled, and two longer (4 μm and 5.7 μm) and thicker. We assessed the cellular interaction with these CNTs using transmission electron microscopy (TEM) 1, 3 and 28 days after instillation. Results TEM analysis revealed that the three CNTs followed the same overall progression pattern over time. Initially, CNTs were taken up either by a diffusion mechanism or via endocytosis. Then CNTs were agglomerated in vesicles in macrophages. Lastly, at 28 days post-exposure, evidence suggesting CNT escape from vesicle enclosures were found. The longer and thicker CNTs more often perturbed and escaped vesicular enclosures in macrophages compared to the smaller CNTs. Bronchoalveolar lavage (BAL) showed that the CNT exposure induced both an eosinophil influx and also eosinophilic crystalline pneumonia. Conclusion Two very different types of multiwalled CNTs had very similar pattern of cellular interactions in lung tissue, with the longer and thicker CNTs resulting in more severe effects in terms of eosinophil influx and incidence of eosinophilic crystalline pneumonia (ECP).


Mutagenesis | 2017

Surface modification does not influence the genotoxic and inflammatory effects of TiO2 nanoparticles after pulmonary exposure by instillation in mice.

Håkan Wallin; Zdenka O. Kyjovska; Sarah S. Poulsen; Nicklas Raun Jacobsen; Anne T. Saber; Stefan Bengtson; Petra Jackson; Ulla Vogel

The influence of surface charge of nanomaterials on toxicological effects is not yet fully understood. We investigated the inflammatory response, the acute phase response and the genotoxic effect of two different titanium dioxide nanoparticles (TiO2 NPs) following a single intratracheal instillation. NRCWE-001 was unmodified rutile TiO2 with endogenous negative surface charge, whereas NRCWE-002 was surface modified to be positively charged. C57BL/6J BomTac mice received 18, 54 and 162 µg/mouse and were humanely killed 1, 3 and 28 days post-exposure. Vehicle controls were tested alongside for comparison. The cellular composition and protein concentration were determined in bronchoalveolar lavage (BAL) fluid as markers for an inflammatory response. Pulmonary and systemic genotoxicity was analysed by the alkaline comet assay as DNA strand breaks in BAL cells, lung and liver tissue. The pulmonary and hepatic acute phase response was analysed by Saa3 mRNA levels in lung tissue or Saa1 mRNA levels in liver tissue by real-time quantitative polymerase chain reaction. Instillation of NRCWE-001 and -002 both induced a dose-dependent neutrophil influx into the lung lining fluid and Saa3 mRNA levels in lung tissue at all assessed time points. There was no statistically significant difference between NRCWE-001 and NRCWE-002. Exposure to both TiO2 NPs induced increased levels of DNA strand breaks in lung tissue at all doses 1 and 28 days post-exposure and NRCWE-002 at the low and middle dose 3 days post-exposure. The DNA strand break levels were statistically significantly different for NRCWE-001 and -002 for liver and for BAL cells, but no consistent pattern was observed. In conclusion, functionalisation of reactive negatively charged rutile TiO2 to positively charged did not consistently influence pulmonary toxicity of the studied TiO2 NPs.


PLOS ONE | 2017

Multi-walled carbon nanotube-physicochemical properties predict the systemic acute phase response following pulmonary exposure in mice

Sarah S. Poulsen; Kristina Bram Knudsen; Petra Jackson; Ingrid Elise Konow Weydahl; Anne T. Saber; Håkan Wallin; Ulla Vogel

Pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) has been linked to an increased risk of developing cardiovascular disease in addition to the well-documented physicochemical-dependent adverse lung effects. A proposed mechanism is through a strong and sustained pulmonary secretion of acute phase proteins to the blood. We identified physicochemical determinants of MWCNT-induced systemic acute phase response by analyzing effects of pulmonary exposure to 14 commercial, well-characterized MWCNTs in female C57BL/6J mice pulmonary exposed to 0, 6, 18 or 54 μg MWCNT/mouse. Plasma levels of acute phase response proteins serum amyloid A1/2 (SAA1/2) and SAA3 were determined on day 1, 28 or 92. Expression levels of hepatic Saa1 and pulmonary Saa3 mRNA levels were assessed to determine the origin of the acute phase response proteins. Pulmonary Saa3 mRNA expression levels were greater and lasted longer than hepatic Saa1 mRNA expression. Plasma SAA1/2 and SAA3 protein levels were related to time and physicochemical properties using adjusted, multiple regression analyses. SAA3 and SAA1/2 plasma protein levels were increased after exposure to almost all of the MWCNTs on day 1, whereas limited changes were observed on day 28 and 92. SAA1/2 and SAA3 protein levels did not correlate and only SAA3 protein levels correlated with neutrophil influx. The multiple regression analyses revealed a protective effect of MWCNT length on SAA1/2 protein level on day 1, such that a longer length resulted in lowered SAA1/2 plasma levels. Increased SAA3 protein levels were positively related to dose and content of Mn, Mg and Co on day 1, whereas oxidation and diameter of the MWCNTs were protective on day 28 and 92, respectively. The results of this study reveal very differently controlled pulmonary and hepatic acute phase responses after MWCNT exposure. As the responses were influenced by the physicochemical properties of the MWCNTs, this study provides the first step towards designing MWCNT that induce less SAA.


Toxicology and Applied Pharmacology | 2018

Corrigendum to “MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs” [Toxicol. Appl. Pharmacol., 284 (2015) 16–32]

Sarah S. Poulsen; Anne T. Saber; Andrew Williams; Ole Andersen; Carsten Købler; Rambabu Atluri; Maria E. Pozzebon; Stefano P. Mucelli; Monica Simion; David Rickerby; Alicja Mortensen; Petra Jackson; Zdenka O. Kyjovska; Kristian Mølhave; Nicklas Raun Jacobsen; Keld Alstrup Jensen; Carole L. Yauk; Håkan Wallin; Sabina Halappanavar; Ulla Vogel

inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs” [Toxicol. Appl. Pharmacol., 284 (2015) 16–32] DTU Orbit (07/11/2019) Corrigendum to “MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs” [Toxicol. Appl. Pharmacol., 284 (2015) 16–32]


Basic & Clinical Pharmacology & Toxicology | 2018

Physicochemical predictors of Multi-Walled Carbon Nanotube-induced pulmonary histopathology and toxicity one year after pulmonary deposition of 11 different Multi-Walled Carbon Nanotubes in mice

Kristina Bram Knudsen; Trine Berthing; Petra Jackson; Sarah S. Poulsen; Alicja Mortensen; Nicklas Raun Jacobsen; Vidar Skaug; Józef Szarek; Karin Sørig Hougaard; Henrik Wolff; Håkan Wallin; Ulla Vogel

Multi‐walled carbon nanotubes (MWCNT) are widely used nanomaterials that cause pulmonary toxicity upon inhalation. The physicochemical properties of MWCNT vary greatly, which makes general safety evaluation challenging to conduct. Identification of the toxicity‐inducing physicochemical properties of MWCNT is therefore of great importance. We have evaluated histological changes in lung tissue 1 year after a single intratracheal instillation of 11 well‐characterized MWCNT in female C57BL/6N BomTac mice. Genotoxicity in liver and spleen was evaluated by the comet assay. The dose of 54 μg MWCNT corresponds to three times the estimated dose accumulated during a work life at a NIOSH recommended exposure limit (0.001 mg/m3). Short and thin MWCNT were observed as agglomerates in lung tissue 1 year after exposure, whereas thicker and longer MWCNT were detected as single fibres, suggesting biopersistence of both types of MWCNT. The thin and entangled MWCNT induced varying degree of pulmonary inflammation, in terms of lymphocytic aggregates, granulomas and macrophage infiltration, whereas two thick and straight MWCNT did not. By multiple regression analysis, larger diameter and higher content of iron predicted less histopathological changes, whereas higher cobalt content significantly predicted more histopathological changes. No MWCNT‐related fibrosis or tumours in the lungs or pleura was found. One thin and entangled MWCNT induced increased levels of DNA strand breaks in liver; however, no physicochemical properties could be related to genotoxicity. This study reveals physicochemical‐dependent difference in MWCNT‐induced long‐term, pulmonary histopathological changes. Identification of diameter size and cobalt content as important for MWCNT toxicity provides clues for designing MWCNT, which cause reduced human health effects following pulmonary exposure.

Collaboration


Dive into the Sarah S. Poulsen's collaboration.

Top Co-Authors

Avatar

Ulla Vogel

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Håkan Wallin

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Anne T. Saber

National Institute of Occupational Health

View shared research outputs
Top Co-Authors

Avatar

Nicklas Raun Jacobsen

National Institute of Occupational Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carsten Købler

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Kristian Mølhave

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alicja Mortensen

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge