Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carsten M. Pusch is active.

Publication


Featured researches published by Carsten M. Pusch.


Nature Communications | 2012

New insights into the Tyrolean Iceman's origin and phenotype as inferred by whole-genome sequencing

Andreas Keller; Angela Graefen; Markus Ball; Mark Matzas; Valesca Boisguerin; Frank Maixner; Petra Leidinger; Christina Backes; Rabab Khairat; Michael Forster; Björn Stade; Andre Franke; Jens Mayer; Jessica Spangler; Stephen F. McLaughlin; Minita Shah; Clarence Lee; Timothy T. Harkins; Alexander Sartori; Andres Moreno-Estrada; Brenna M. Henn; Martin Sikora; Ornella Semino; Jacques Chiaroni; Siiri Rootsi; Natalie M. Myres; Vicente M. Cabrera; Peter A. Underhill; Carlos Bustamante; Eduard Egarter Vigl

The Tyrolean Iceman, a 5,300-year-old Copper age individual, was discovered in 1991 on the Tisenjoch Pass in the Italian part of the Ötztal Alps. Here we report the complete genome sequence of the Iceman and show 100% concordance between the previously reported mitochondrial genome sequence and the consensus sequence generated from our genomic data. We present indications for recent common ancestry between the Iceman and present-day inhabitants of the Tyrrhenian Sea, that the Iceman probably had brown eyes, belonged to blood group O and was lactose intolerant. His genetic predisposition shows an increased risk for coronary heart disease and may have contributed to the development of previously reported vascular calcifications. Sequences corresponding to ~60% of the genome of Borrelia burgdorferi are indicative of the earliest human case of infection with the pathogen for Lyme borreliosis.


Nature Genetics | 2000

The complete form of X-linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein

Carsten M. Pusch; Christina Zeitz; Oliver Brandau; Katrin Pesch; Helene Achatz; Silke Feil; Curt Scharfe; Johannes Maurer; Felix K. Jacobi; Alfred J. L. G. Pinckers; Sten Andréasson; Alison J. Hardcastle; Bernd Wissinger; Wolfgang Berger; Alfons Meindl

X-linked congenital stationary night blindness (XLCSNB) is characterized by impaired scotopic vision with associated ocular symptoms such as myopia, hyperopia, nystagmus and reduced visual acuity. Genetic mapping in families with XLCSNB revealed two different loci on the proximal short arm of the X chromosome. These two genetic subtypes can be distinguished on the basis of electroretinogram (ERG) responses and psychophysical testing as a complete (CSNB1) and an incomplete (CSNB2) form. The CSNB1 locus has been mapped to a 5-cM linkage interval in Xp11.4 (refs 2,5–7). Here we construct and analyse a contig between the markers DXS993 and DXS228, leading to the identification of a new gene mutated in CSNB1 patients. It is partially deleted in 3 families and mutation analysis in a further 21 families detected another 13 different mutations. This gene, designated NYX, encodes a protein of 481 amino acids (nyctalopin) and is expressed at low levels in tissues including retina, brain, testis and muscle. The predicted polypeptide is a glycosylphosphatidylinositol (GPI)-anchored extracellular protein with 11 typical and 2 cysteine-rich, leucine-rich repeats (LRRs). This motif is important for protein-protein interactions and members of the LRR superfamily are involved in cell adhesion and axon guidance. Future functional analysis of nyctalopin might therefore give insight into the fine-regulation of cell-cell contacts in the retina.


JAMA | 2010

Ancestry and Pathology in King Tutankhamun's Family

Zahi Hawass; Yehia Z. Gad; Somaia Ismail; Rabab Khairat; Dina Fathalla; Naglaa Hasan; Amal Ahmed; Markus Ball; Fawzi Gaballah; Sally Wasef; Mohamed Fateen; Hany Amer; Paul Gostner; Ashraf Selim; Albert Zink; Carsten M. Pusch

CONTEXT The New Kingdom in ancient Egypt, comprising the 18th, 19th, and 20th dynasties, spanned the mid-16th to the early 11th centuries bc. The late 18th dynasty, which included the reigns of pharaohs Akhenaten and Tutankhamun, was an extraordinary time. The identification of a number of royal mummies from this era, the exact relationships between some members of the royal family, and possible illnesses and causes of death have been matters of debate. OBJECTIVES To introduce a new approach to molecular and medical Egyptology, to determine familial relationships among 11 royal mummies of the New Kingdom, and to search for pathological features attributable to possible murder, consanguinity, inherited disorders, and infectious diseases. DESIGN From September 2007 to October 2009, royal mummies underwent detailed anthropological, radiological, and genetic studies as part of the King Tutankhamun Family Project. Mummies distinct from Tutankhamuns immediate lineage served as the genetic and morphological reference. To authenticate DNA results, analytical steps were repeated and independently replicated in a second ancient DNA laboratory staffed by a separate group of personnel. Eleven royal mummies dating from circa 1410-1324 bc and suspected of being kindred of Tutankhamun and 5 royal mummies dating to an earlier period, circa 1550-1479 bc, were examined. MAIN OUTCOME MEASURES Microsatellite-based haplotypes in the mummies, generational segregation of alleles within possible pedigree variants, and correlation of identified diseases with individual age, archeological evidence, and the written historical record. RESULTS Genetic fingerprinting allowed the construction of a 5-generation pedigree of Tutankhamuns immediate lineage. The KV55 mummy and KV35YL were identified as the parents of Tutankhamun. No signs of gynecomastia and craniosynostoses (eg, Antley-Bixler syndrome) or Marfan syndrome were found, but an accumulation of malformations in Tutankhamuns family was evident. Several pathologies including Köhler disease II were diagnosed in Tutankhamun; none alone would have caused death. Genetic testing for STEVOR, AMA1, or MSP1 genes specific for Plasmodium falciparum revealed indications of malaria tropica in 4 mummies, including Tutankhamuns. These results suggest avascular bone necrosis in conjunction with the malarial infection as the most likely cause of death in Tutankhamun. Walking impairment and malarial disease sustained by Tutankhamun is supported by the discovery of canes and an afterlife pharmacy in his tomb. CONCLUSION Using a multidisciplinary scientific approach, we showed the feasibility of gathering data on Pharaonic kinship and diseases and speculated about individual causes of death.


Human Genetics | 1998

The SOx10/Sox10 gene from human and mouse : sequence, expression, and transactivation by the encoded hmg domain transcription factor

Carsten M. Pusch; Elisabeth Hustert; Dietmar Pfeifer; Peter Südbeck; Ralf Kist; Bruce A. Roe; Zhili Wang; Rudi Balling; Nikolaus Blin; Gerd Scherer

Abstract The SOX genes form a gene family related by homology to the high-mobility group (HMG) box region of the testis-determining gene SRY. We have cloned and sequenced the SOX10 and Sox10 genes from human and mouse, respectively. Both genes encode proteins of 466 amino acids with 98% sequence identity. Significant expression of the 2.9-kb human SOX10 mRNA is observed in fetal brain and in adult brain, heart, small intestine and colon. Strong expression of Sox10 occurs throughout the peripheral nervous system during mouse embryonic development. SOX10 shows an overall amino acid sequence identity of 59% to SOX9. Like SOX9, SOX10 has a potent transcription activation domain at its C-terminus and is therefore likely to function as a transcription factor. Whereas SOX9 maps to 17q, a SOX10 cosmid has previously been mapped by us to the region 22q13.1. Mutations in SOX10 have recently been identified as one cause of Waardenburg-Hirschsprung disease in humans, while a Sox10 mutation underlies the mouse mutant Dom, a murine Hirschsprung model.


American Journal of Human Genetics | 2004

Nonmuscle Myosin Heavy-Chain Gene MYH14 Is Expressed in Cochlea and Mutated in Patients Affected by Autosomal Dominant Hearing Impairment (DFNA4)

Francesca Donaudy; Rik Snoeckx; Markus Pfister; Hans Peter Zenner; Nikolaus Blin; Mariateresa Di Stazio; Antonella Ferrara; Carmen Lanzara; Romina Ficarella; Frank Declau; Carsten M. Pusch; Peter Nürnberg; Salvatore Melchionda; Leopoldo Zelante; Ester Ballana; Xavier Estivill; Guy Van Camp; Paolo Gasparini; Anna Savoia

Myosins have been implicated in various motile processes, including organelle translocation, ion-channel gating, and cytoskeleton reorganization. Different members of the myosin superfamily are responsible for syndromic and nonsyndromic hearing impairment in both humans and mice. MYH14 encodes one of the heavy chains of the class II nonmuscle myosins, and it is localized within the autosomal dominant hearing impairment (DFNA4) critical region. After demonstrating that MYH14 is highly expressed in mouse cochlea, we performed a mutational screening in a large series of 300 hearing-impaired patients from Italy, Spain, and Belgium and in a German kindred linked to DFNA4. This study allowed us to identify a nonsense and two missense mutations in large pedigrees, linked to DFNA4, as well as a de novo allele in a sporadic case. Absence of these mutations in healthy individuals was tested in 200 control individuals. These findings clearly demonstrate the role of MYH14 in causing autosomal dominant hearing loss and further confirm the crucial role of the myosin superfamily in auditive functions.


Human Molecular Genetics | 2009

Otoferlin interacts with myosin VI: implications for maintenance of the basolateral synaptic structure of the inner hair cell

Paulina Heidrych; Ulrike Zimmermann; Stephanie Kuhn; Christoph Franz; Jutta Engel; Susanne V. Duncker; Bernhard Hirt; Carsten M. Pusch; Peter Ruth; Markus Pfister; Walter Marcotti; Nikolaus Blin; Marlies Knipper

Otoferlin has been proposed to be the Ca(2+) sensor in hair cell exocytosis, compensating for the classical synaptic fusion proteins synaptotagmin-1 and synaptotagmin-2. In the present study, yeast two-hybrid assays reveal myosin VI as a novel otoferlin binding partner. Co-immunoprecipitation assay and co-expression suggest an interaction of both proteins within the basolateral part of inner hair cells (IHCs). Comparison of otoferlin mutants and myosin VI mutant mice indicates non-complementary and complementary roles of myosin VI and otoferlin for synaptic maturation: (i) IHCs from otoferlin mutant mice exhibited a decoupling of CtBP2/RIBEYE and Ca(V)1.3 and severe reduction of exocytosis. (ii) Myosin VI mutant IHCs failed to transport BK channels to the membrane of the apical cell regions, and the exocytotic Ca(2+) efficiency did not mature. (iii) Otoferlin and myosin VI mutant IHCs showed a reduced basolateral synaptic surface area and altered active zone topography. Membrane infoldings in otoferlin mutant IHCs indicated disturbed transport of endocytotic membranes and link the above morphological changes to a complementary role of otoferlin and myosin VI in transport of intracellular compartments to the basolateral IHC membrane.


Neurobiology of Disease | 2002

Substitutions in the conserved C2C domain of otoferlin cause DFNB9, a form of nonsyndromic autosomal recessive deafness.

Farhad Mirghomizadeh; Markus Pfister; Fazil Apaydin; Christine Petit; Susan Kupka; Carsten M. Pusch; Hans-Peter Zenner; Nikolaus Blin

DFNB, the nonsyndromic hearing loss with an autosomal recessive mode of inheritance constitutes the majority of severe to profound prelingual forms of hearing impairment, usually leading to inability of speech acquisition. We analyzed a consanguineous family with autosomal recessive deafness which has been shown to segregate within chromosomal region 2p23.1 (DFNB9; MIM 601071). By SSCP analysis and DNA sequencing of the 48 exons of the DFNB9 gene, coding for otoferlin, previously reported mutations in OTOF were excluded. Next to a frequent T > C single nucleotide polymorphism in exon 8, two novel mutations linked in exon 15 of the OTOF long splice form were identified comprising substitutions at positions 490 (Pro > Gln) and 515 (Ile > Thr), both located in the conserved Ca(2+) binding C2C domain of this peptide. Comparisons of homology using human and mice otoferlins and closely related peptides and computer simulation analyses suggest that changes in the mutated segments secondary structure affect the Ca(2+) binding capacity of the C2C domain in otoferlin.


Human Molecular Genetics | 2008

Rab8b GTPase, a protein transport regulator, is an interacting partner of otoferlin, defective in a human autosomal recessive deafness form

Paulina Heidrych; Ulrike Zimmermann; Andreas Breß; Carsten M. Pusch; Peter Ruth; Markus Pfister; Marlies Knipper; Nikolaus Blin

Mutations within OTOF encoding otoferlin lead to a recessive disorder called DFNB9. Several studies have indicated otoferlins association with ribbon synapses of cochlear sensory hair cells, as well as data showing the proteins presence in neurons, nerve fibers and hair cells, suggesting a more ubiquitous function. Otoferlins co-localization not only with ribbon synaptic proteins, but also with additional endosomal (EEA1) or Golgi proteins (GM130) were motivation for a search for further binding partners of otoferlin by a yeast two-hybrid screen in a rodent cochlear cDNA library (P3-P15). This screen identified Rab8b GTPase as a novel interacting partner, substantiated by transient co-expression and co-localization in HEK 293 cells and co-immunoprecipitation of the complex using tagged proteins in vitro and native proteins from cochlea. This finding implies that otoferlin could be a part of components contributing to trans-Golgi trafficking.


Journal of Applied Genetics | 2013

First insights into the metagenome of Egyptian mummies using next-generation sequencing

Rabab Khairat; Markus Ball; Chun-Chi Hsieh Chang; Raffaella Bianucci; Andreas G. Nerlich; Martin Trautmann; Somaia Ismail; Gamila Shanab; Amr M. Karim; Yehia Z. Gad; Carsten M. Pusch

We applied, for the first time, next-generation sequencing (NGS) technology on Egyptian mummies. Seven NGS datasets obtained from five randomly selected Third Intermediate to Graeco-Roman Egyptian mummies (806 BC–124AD) and two unearthed pre-contact Bolivian lowland skeletons were generated and characterised. The datasets were contrasted to three recently published NGS datasets obtained from cold-climate regions, i.e. the Saqqaq, the Denisova hominid and the Alpine Iceman. Analysis was done using one million reads of each newly generated or published dataset. Blastn and megablast results were analysed using MEGAN software. Distinct NGS results were replicated by specific and sensitive polymerase chain reaction (PCR) protocols in ancient DNA dedicated laboratories. Here, we provide unambiguous identification of authentic DNA in Egyptian mummies. The NGS datasets showed variable contents of endogenous DNA harboured in tissues. Three of five mummies displayed a human DNA proportion comparable to the human read count of the Saqqaq permafrost-preserved specimen. Furthermore, a metagenomic signature unique to mummies was displayed. By applying a “bacterial fingerprint”, discrimination among mummies and other remains from warm areas outside Egypt was possible. Due to the absence of an adequate environment monitoring, a bacterial bloom was identified when analysing different biopsies from the same mummies taken after a lapse of time of 1.5 years. Plant kingdom representation in all mummy datasets was unique and could be partially associated with their use in embalming materials. Finally, NGS data showed the presence of Plasmodium falciparum and Toxoplasma gondii DNA sequences, indicating malaria and toxoplasmosis in these mummies. We demonstrate that endogenous ancient DNA can be extracted from mummies and serve as a proper template for the NGS technique, thus, opening new pathways of investigation for future genome sequencing of ancient Egyptian individuals.


American Journal of Human Genetics | 2000

Genomic Differentiation of Neanderthals and Anatomically Modern Man Allows a Fossil-DNA-Based Classification of Morphologically Indistinguishable Hominid Bones

Michael Scholz; Lutz Bachmann; Graeme Nicholson; Jutta Bachmann; Ian Giddings; Barbara Rüschoff-Thale; Alfred Czarnetzki; Carsten M. Pusch

Southern blot hybridizations of genomic DNA were introduced as a relatively simple fossil-DNA-based approach to classify remains of Neanderthals. When hybridized with genomic DNA of either human or Neanderthal origin, DNA extracted from two Neanderthal finds-the Os parietale, from Warendorf-Neuwarendorf, Germany, and a clavicula, from Krapina, Croatia-was shown to yield hybridization signals that differ by at least a factor of two compared to the signals obtained with the use of fossil DNA of an early Homo sapiens from the Vogelherd cave (Stetten I), Germany. When labeled chimpanzee DNA was used as a probe, Neanderthal and human DNA, however, revealed hybridization signals of similar intensity. Thus, the genome of Neanderthals is expected to differ significantly from the genome of anatomically modern man, because of the contrasting composition of repetitive DNA. These data support the hypothesis that Neanderthals were not ancestors of anatomically modern man.

Collaboration


Dive into the Carsten M. Pusch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lutz Bachmann

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge