Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carsten Schwan is active.

Publication


Featured researches published by Carsten Schwan.


PLOS Pathogens | 2009

Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria.

Carsten Schwan; Bärbel Stecher; Tina Tzivelekidis; Marco van Ham; Manfred Rohde; Wolf-Dietrich Hardt; Jürgen Wehland; Klaus Aktories

Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by production of the Rho GTPase-glucosylating toxins A and B. Recently emerging hypervirulent Clostridium difficile strains additionally produce the binary ADP-ribosyltransferase toxin CDT (Clostridium difficile transferase), which ADP-ribosylates actin and inhibits actin polymerization. Thus far, the role of CDT as a virulence factor is not understood. Here we report by using time-lapse- and immunofluorescence microscopy that CDT and other binary actin-ADP-ribosylating toxins, including Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin, induce redistribution of microtubules and formation of long (up to >150 µm) microtubule-based protrusions at the surface of intestinal epithelial cells. The toxins increase the length of decoration of microtubule plus-ends by EB1/3, CLIP-170 and CLIP-115 proteins and cause redistribution of the capture proteins CLASP2 and ACF7 from microtubules at the cell cortex into the cell interior. The CDT-induced microtubule protrusions form a dense meshwork at the cell surface, which wrap and embed bacterial cells, thereby largely increasing the adherence of Clostridia. The study describes a novel type of microtubule structure caused by less efficient microtubule capture and offers a new perspective for the pathogenetic role of CDT and other binary actin-ADP-ribosylating toxins in host–pathogen interactions.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT)

Panagiotis Papatheodorou; Jan E. Carette; George W. Bell; Carsten Schwan; Gregor Guttenberg; Thijn R. Brummelkamp; Klaus Aktories

Clostridium difficile infection (CDI) causes antibiotic-associated diarrhea and pseudomembranous colitis. Hypervirulent strains of the pathogen, which are responsible for increased morbidity and mortality of CDI, produce the binary actin-ADP ribosylating toxin Clostridium difficile transferase (CDT) in addition to the Rho-glucosylating toxins A and B. CDT depolymerizes the actin cytoskeleton, increases adherence and colonization of Clostridia by induction of microtubule-based cell protrusions and, eventually, causes death of target cells. Using a haploid genetic screen, we identified the lipolysis-stimulated lipoprotein receptor as the membrane receptor for CDT uptake by target cells. Moreover, we show that Clostridium perfringens iota toxin, which is a related binary actin-ADP ribosylating toxin, enters target cells via the lipolysis-stimulated lipoprotein receptor. Identification of the toxin receptors is essential for understanding of the toxin uptake and provides a most valuable basis for antitoxin strategies.


FEBS Journal | 2011

Actin as target for modification by bacterial protein toxins.

Klaus Aktories; Alexander E. Lang; Carsten Schwan; Hans Georg Mannherz

Various bacterial protein toxins and effectors target the actin cytoskeleton. At least three groups of toxins/effectors can be identified, which directly modify actin molecules. One group of toxins/effectors causes ADP‐ribosylation of actin at arginine‐177, thereby inhibiting actin polymerization. Members of this group are numerous binary actin–ADP‐ribosylating exotoxins (e.g. Clostridium botulinum C2 toxin) as well as several bacterial ADP‐ribosyltransferases (e.g. Salmonella enterica SpvB) which are not binary in structure. The second group includes toxins that modify actin to promote actin polymerization and the formation of actin aggregates. To this group belongs a toxin from the Photorhabdus luminescens Tc toxin complex that ADP‐ribosylates actin at threonine‐148. A third group of bacterial toxins/effectors (e.g. Vibrio cholerae multifunctional, autoprocessing RTX toxin) catalyses a chemical crosslinking reaction of actin thereby forming oligomers, while blocking the polymerization of actin to functional filaments. Novel findings about members of these toxin groups are discussed in detail.


Infection and Immunity | 2011

Membrane Translocation of Binary Actin-ADP-Ribosylating Toxins from Clostridium difficile and Clostridium perfringens Is Facilitated by Cyclophilin A and Hsp90

Eva Kaiser; Claudia Kroll; Katharina Ernst; Carsten Schwan; Michel Popoff; Gunter Fischer; Johannes Buchner; Klaus Aktories; Holger Barth

ABSTRACT Some hypervirulent strains of Clostridium difficile produce the binary actin-ADP-ribosylating toxin C. difficile transferase (CDT) in addition to Rho-glucosylating toxins A and B. It has been suggested that the presence of CDT increases the severity of C. difficile-associated diseases, including pseudomembranous colitis. CDT contains a binding and translocation component, CDTb, that mediates the transport of the separate enzyme component CDTa into the cytosol of target cells, where CDTa modifies actin. Here we investigated the mechanism of cellular CDT uptake and found that bafilomycin A1 protects cultured epithelial cells from intoxication with CDT, implying that CDTa is translocated from acidified endosomal vesicles into the cytosol. Consistently, CDTa is translocated across the cytoplasmic membranes into the cytosol when cell-bound CDT is exposed to acidic medium. Radicicol and cyclosporine A, inhibitors of the heat shock protein Hsp90 and cyclophilins, respectively, protected cells from intoxication with CDT but not from intoxication with toxins A and B. Moreover, both inhibitors blocked the pH-dependent membrane translocation of CDTa, strongly suggesting that Hsp90 and cyclophilin are crucial for this process. In contrast, the inhibitors did not interfere with the ADP-ribosyltransferase activity, receptor binding, or endocytosis of the toxin. We obtained comparable results with the closely related iota-toxin from Clostridium perfringens. Moreover, CDTa and Ia, the enzyme component of iota-toxin, specifically bound to immobilized Hsp90 and cyclophilin A in vitro. In combination with our recently obtained data on the C2 toxin from C. botulinum, these results imply a common Hsp90/cyclophilin A-dependent translocation mechanism for the family of binary actin-ADP-ribosylating toxins.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Clostridium difficile toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence.

Carsten Schwan; Anna S. Kruppke; Thilo Nölke; Lucas Schumacher; Friedrich Koch-Nolte; Mikhail Kudryashev; Henning Stahlberg; Klaus Aktories

Significance Hypervirulent strains of Clostridium difficile frequently produce the actin-ADP–ribosylating toxin Clostridium difficile transferase (CDT), which increases bacteria adherence by formation of microtubule-based protrusions. Here we report that CDT-induced protrusions contain trafficking vesicles and endoplasmic reticulum, connected to microtubules via the calcium sensor Stim1. CDT increases calcium signaling and reroutes fibronectin-containing vesicles from the basolateral to the apical side of intestinal epithelial cells, where protrusions are formed. Released fibronectin enhances adherence of bacteria. The data reassess the role of the actin cytoskeleton in bacterial adherence and infection. Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by the actions of Rho-glucosylating toxins A and B. Recently identified hypervirulent strains, which are associated with increased morbidity and mortality, additionally produce the actin-ADP–ribosylating toxin C. difficile transferase (CDT). CDT depolymerizes actin, causes formation of microtubule-based protrusions, and increases pathogen adherence. Here we show that CDT-induced protrusions allow vesicle traffic and contain endoplasmic reticulum tubules, connected to microtubules via the calcium sensor Stim1. The toxin reroutes Rab11-positive vesicles containing fibronectin, which is involved in bacterial adherence, from basolateral to the apical membrane sides in a microtubule- and Stim1-dependent manner. The data yield a model of C. difficile adherence regulated by actin depolymerization, microtubule restructuring, subsequent Stim1-dependent Ca2+ signaling, vesicle rerouting, and secretion of ECM proteins to increase bacterial adherence.


Infection and Immunity | 2012

Identification of the cellular receptor of Clostridium spiroforme toxin.

Panagiotis Papatheodorou; Claudia Wilczek; Thilo Nölke; Gregor Guttenberg; Daniel Hornuss; Carsten Schwan; Klaus Aktories

ABSTRACT Clostridium spiroforme produces the binary actin-ADP-ribosylating toxin CST (C. spiroforme toxin), which has been proposed to be responsible for diarrhea, enterocolitis, and eventually death, especially in rabbits. Here we report on the recombinant production of the enzyme component (CSTa) and the binding component (CSTb) of C. spiroforme toxin in Bacillus megaterium. By using the recombinant toxin components, we show that CST enters target cells via the lipolysis-stimulated lipoprotein receptor (LSR), which has been recently identified as the host cell receptor of the binary toxins Clostridium difficile transferase (CDT) and Clostridium perfringens iota toxin. Microscopic studies revealed that CST, but not the related Clostridium botulinum C2 toxin, colocalized with LSR during toxin uptake and traffic to endosomal compartments. Our findings indicate that CST shares LSR with C. difficile CDT and C. perfringens iota toxin as a host cell surface receptor.


The Journal of Neuroscience | 2010

Reelin Signals through Apolipoprotein E Receptor 2 and Cdc42 to Increase Growth Cone Motility and Filopodia Formation

Jost Leemhuis; Elisabeth Bouché; Michael Frotscher; Frank Henle; Lutz Hein; Joachim Herz; Dieter K. Meyer; Marina Pichler; Günter Roth; Carsten Schwan; Hans H. Bock

Lipoprotein receptor signaling regulates the positioning and differentiation of postmitotic neurons during development and modulates neuronal plasticity in the mature brain. Depending on the contextual situation, the lipoprotein receptor ligand Reelin can have opposing effects on cortical neurons. We show that Reelin increases growth cone motility and filopodia formation, and identify the underlying signaling cascade. Reelin activates the Rho GTPase Cdc42, known for its role in neuronal morphogenesis and directed migration, in an apolipoprotein E receptor 2-, Disabled-1-, and phosphatidylinositol 3-kinase-dependent manner. We demonstrate that neuronal vesicle trafficking, a Cdc42-controlled process, is increased after Reelin treatment and further provide evidence that the peptidergic VIP/PACAP38 system and Reelin can functionally interact to promote axonal branching. In conclusion, Reelin-induced activation of Cdc42 contributes to the regulation of the cytoskeleton of individual responsive neurons and converges with other signaling cascades to orchestrate Rho GTPase activity and promote neuronal development. Our data link the observation that defects in Rho GTPases and Reelin signaling are responsible for developmental defects leading to neurological and psychiatric disorders.


Journal of Biological Chemistry | 2012

Molecular characteristics of Clostridium perfringens TpeL toxin and consequences of mono-O-GlcNAcylation of Ras in living cells.

Gregor Guttenberg; Sven Hornei; Thomas Jank; Carsten Schwan; Wei Lü; Oliver Einsle; Panagiotis Papatheodorou; Klaus Aktories

Background: TpeL is a member of the family of clostridial glucosylating toxins, produced by Clostridium perfringens. Results: TpeL enters target cells by self-mediated entry and mono-glycosylates Ras proteins at Thr-35. Conclusion: TpeL inhibits Ras signaling and induces apoptosis in target cells. Significance: TpeL is a new glucosylating toxin produced by C. perfringens. TpeL is a member of the family of clostridial glucosylating toxins produced by Clostridium perfringens type A, B, and C strains. In contrast to other members of this toxin family, it lacks a C-terminal polypeptide repeat domain, which is suggested to be involved in target cell binding. It was shown that the glucosyltransferase domain of TpeL modifies Ras in vitro by mono-O-glucosylation or mono-O-GlcNAcylation (Nagahama, M., Ohkubo, A., Oda, M., Kobayashi, K., Amimoto, K., Miyamoto, K., and Sakurai, J. (2011) Infect. Immun. 79, 905–910). Here we show that TpeL preferably utilizes UDP-N-acetylglucosamine (UDP-GlcNAc) as a sugar donor. Change of alanine 383 of TpeL to isoleucine turns the sugar donor preference from UDP-GlcNAc to UDP-glucose. In contrast to previous studies, we show that Rac is a poor substrate in vitro and in vivo and requires 1–2 magnitudes higher toxin concentrations for modification by TpeL. The toxin is autoproteolytically processed in the presence of inositol hexakisphosphate (InsP6) by an intrinsic cysteine protease domain, located next to the glucosyltransferase domain. A C-terminally extended TpeL full-length variant (TpeL1–1779) induces apoptosis in HeLa cells (most likely by mono-O-GlcNAcylation of Ras), and inhibits Ras signaling including Ras-Raf interaction and ERK activation. In addition, TpeL blocks Ras signaling in rat pheochromocytoma PC12 cells. TpeL is a glucosylating toxin, which modifies Ras and induces apoptosis in target cells without having a typical C-terminal polypeptide repeat domain.


Nature microbiology | 2016

The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia

Carrie A. Cowardin; Erica L. Buonomo; Mahmoud M. Saleh; Madeline G. Wilson; Stacey L. Burgess; Sarah A. Kuehne; Carsten Schwan; Anna M. Eichhoff; Friedrich Koch-Nolte; Dena Lyras; Klaus Aktories; Nigel P. Minton; William A. Petri

Clostridium difficile is the most common hospital acquired pathogen in the USA, and infection is, in many cases, fatal. Toxins A and B are its major virulence factors, but expression of a third toxin, known as C. difficile transferase (CDT), is increasingly common. An adenosine diphosphate (ADP)-ribosyltransferase that causes actin cytoskeletal disruption, CDT is typically produced by the major, hypervirulent strains and has been associated with more severe disease. Here, we show that CDT enhances the virulence of two PCR-ribotype 027 strains in mice. The toxin induces pathogenic host inflammation via a Toll-like receptor 2 (TLR2)-dependent pathway, resulting in the suppression of a protective host eosinophilic response. Finally, we show that restoration of TLR2-deficient eosinophils is sufficient for protection from a strain producing CDT. These findings offer an explanation for the enhanced virulence of CDT-expressing C. difficile and demonstrate a mechanism by which this binary toxin subverts the host immune response.


Toxicon | 2012

Bidirectional attack on the actin cytoskeleton. Bacterial protein toxins causing polymerization or depolymerization of actin

Klaus Aktories; Carsten Schwan; Panagiotis Papatheodorou; Alexander E. Lang

The actin cytoskeleton is one of the major targets of bacterial protein toxins. The family of binary actin-ADP-ribosylating toxins, including Clostridium difficile transferase CDT, Clostridium perfringens iota toxin and Clostridium botulinum C2 toxin, modifies arginine-177 of actin. Thereby actin polymerization is blocked. By contrast, actin polymerization is facilitated by the tripartite Photorhabdus luminescens toxin complex including TccC3, which modifies actin at threonine-148. The review discusses both toxin families in respect to recent findings.

Collaboration


Dive into the Carsten Schwan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Jank

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar

Doris Jehle

University of Freiburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge