Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Klaus Aktories is active.

Publication


Featured researches published by Klaus Aktories.


Nature | 1997

Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1

Gudula Schmidt; Peter Sehr; Matthias Wilm; Jörg Selzer; Matthias Mann; Klaus Aktories

The actin cytoskeleton is regulated by GTP-hydrolysing proteins, the Rho GTPases,, which act as molecular switches in diverse signal-transduction processes. Various bacterial toxins can inactivate Rho GTPases by ADP-ribosylation or glucosylation. Previous research has identified Rho proteins as putative targets for Escherichia coli cytotoxic necrotizing factors 1 and 2 (CNF1 and 2),. These toxins induce actin assembly and multinucleation in culture cells. Here we show that treatment of RhoA with CNF1 inhibits the intrinsic GTPase activity of RhoA and completely blocks GTPase activity stimulated by the Rho-GTPase-activating protein (rhoGAP). Analysis by mass spectrometry and amino-acid sequencing of proteolytic peptides derived from CNF1-treated RhoA indicate that CNF1 induces deamidation of a glutamine residue at position 63 (Gln 63) to give constitutively active Rho protein.


Journal of Cell Biology | 2003

Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis

Supriya Srinivasan; Fei Wang; Suzana Glavas; Alexander Ott; Fred Hofmann; Klaus Aktories; Daniel Kalman; Henry R. Bourne

Neutrophils exposed to chemoattractants polarize and accumulate polymerized actin at the leading edge. In neutrophil-like HL-60 cells, this asymmetry depends on a positive feedback loop in which accumulation of a membrane lipid, phosphatidylinositol (PI) 3,4,5-trisphosphate (PI[3,4,5]P3), leads to activation of Rac and/or Cdc42, and vice versa. We now report that Rac and Cdc42 play distinct roles in regulating this asymmetry. In the absence of chemoattractant, expression of constitutively active Rac stimulates accumulation at the plasma membrane of actin polymers and of GFP-tagged fluorescent probes for PI(3,4,5)P3 (the PH domain of Akt) and activated Rac (the p21-binding domain of p21-activated kinase). Dominant negative Rac inhibits chemoattractant-stimulated accumulation of actin polymers and membrane translocation of both fluorescent probes and attainment of morphologic polarity. Expression of constitutively active Cdc42 or of two different protein inhibitors of Cdc42 fails to mimic effects of the Rac mutants on actin or PI(3,4,5)P3. Instead, Cdc42 inhibitors prevent cells from maintaining a persistent leading edge and frequently induce formation of multiple, short lived leading edges containing actin polymers, PI(3,4,5)P3, and activated Rac. We conclude that Rac plays a dominant role in the PI(3,4,5)P3-dependent positive feedback loop required for forming a leading edge, whereas location and stability of the leading edge are regulated by Cdc42.


Molecular Microbiology | 2002

GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure

Ulrich von Pawel-Rammingen; Maxim V. Telepnev; Gudula Schmidt; Klaus Aktories; Hans Wolf-Watz; Roland Rosqvist

The YopE cytotoxin of Yersinia pseudotuberculosis is an essential virulence determinant that is injected into the eukaryotic target cell via a plasmid‐encoded type III secretion system. Injection of YopE into eukaryotic cells induces depolymerization of actin stress fibres. Here, we show that YopE exhibits a GTPase‐activating protein (GAP) activity and that the presence of YopE stimulates downregulation of Rho, Rac and Cdc42 activity. YopE has an arginine finger motif showing homology with those found in other GAP proteins. Exchange of arginine 144 with alanine, located in this arginine finger motif, results in an inactive form of YopE that can no longer stimulate GTP hydrolysis by the GTPase. Furthermore, a yopE(R144A) mutant is unable to induce cytotoxicity on cultured HeLa cells in contrast to the corresponding wild‐type strain. Expression of wild‐type YopE in cells of Saccharomyces cerevisiae inhibits growth, while in contrast, expression of the inactive form of YopE, YopE(R144A), does not affect the yeast cells. Co‐expression of proteins belonging to the Rho1 pathway of yeast, Rho1, Rom2p, Bck1 and Ste20, suppressed the growth phenotype of YopE in yeast cells. These results provide evidence that YopE exhibits a GAP activity to inactivate RhoGTPases, leading to depolymerization of the actin stress fibres in eukaryotic cells and growth inhibition in yeast.


Microbiology and Molecular Biology Reviews | 2004

Binary Bacterial Toxins: Biochemistry, Biology, and Applications of Common Clostridium and Bacillus Proteins

Holger Barth; Klaus Aktories; Michel R. Popoff; Bradley G. Stiles

SUMMARY Certain pathogenic species of Bacillus and Clostridium have developed unique methods for intoxicating cells that employ the classic enzymatic “A-B” paradigm for protein toxins. The binary toxins produced by B. anthracis, B. cereus, C. botulinum, C. difficile, C. perfringens, and C. spiroforme consist of components not physically associated in solution that are linked to various diseases in humans, animals, or insects. The “B” components are synthesized as precursors that are subsequently activated by serine-type proteases on the targeted cell surface and/or in solution. Following release of a 20-kDa N-terminal peptide, the activated “B” components form homoheptameric rings that subsequently dock with an “A” component(s) on the cell surface. By following an acidified endosomal route and translocation into the cytosol, “A” molecules disable a cell (and host organism) via disruption of the actin cytoskeleton, increasing intracellular levels of cyclic AMP, or inactivation of signaling pathways linked to mitogen-activated protein kinase kinases. Recently, B. anthracis has gleaned much notoriety as a biowarfare/bioterrorism agent, and of primary interest has been the edema and lethal toxins, their role in anthrax, as well as the development of efficacious vaccines and therapeutics targeting these virulence factors and ultimately B. anthracis. This review comprehensively surveys the literature and discusses the similarities, as well as distinct differences, between each Clostridium and Bacillus binary toxin in terms of their biochemistry, biology, genetics, structure, and applications in science and medicine. The information may foster future studies that aid novel vaccine and drug development, as well as a better understanding of a conserved intoxication process utilized by various gram-positive, spore-forming bacteria.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin-O

Iwan Walev; Sebastian Chakrit Bhakdi; Fred Hofmann; Nabil Djonder; Angela Valeva; Klaus Aktories; Sucharit Bhakdi

The pore-forming toxin streptolysin O (SLO) can be used to reversibly permeabilize adherent and nonadherent cells, allowing delivery of molecules with up to 100 kDa mass to the cytosol. Using FITC-labeled albumin, 105–106 molecules were estimated to be entrapped per cell. Repair of toxin lesions depended on Ca2+-calmodulin and on intact microtubules, but was not sensitive to actin disruption or to inhibition of protein synthesis. Resealed cells were viable for days and retained the capacity to endocytose and to proliferate. The active domains of large clostridial toxins were introduced into three different cell lines. The domains were derived from Clostridium difficile B-toxin and Clostridium sordelli lethal toxin, which glycosylate small G-proteins, and from Clostridium botulinum C2 toxin, which ADP-ribosylates actin. After delivery with SLO, all three toxins disrupted the actin cytoskeleton to cause rounding up of the cells. Glucosylation assays demonstrated that G-proteins Rho and Ras were retained in the permeabilized cells and were modified by the respective toxins. Inactivation of these G-proteins resulted in reduced stimulus-dependent granule secretion, whereas ADP-ribosylation of actin by the C. botulinum C2-toxin resulted in enhanced secretion in cells. The presented method for introducing proteins into living cells should find multifaceted application in cell biology.


PLOS Pathogens | 2009

Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria.

Carsten Schwan; Bärbel Stecher; Tina Tzivelekidis; Marco van Ham; Manfred Rohde; Wolf-Dietrich Hardt; Jürgen Wehland; Klaus Aktories

Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by production of the Rho GTPase-glucosylating toxins A and B. Recently emerging hypervirulent Clostridium difficile strains additionally produce the binary ADP-ribosyltransferase toxin CDT (Clostridium difficile transferase), which ADP-ribosylates actin and inhibits actin polymerization. Thus far, the role of CDT as a virulence factor is not understood. Here we report by using time-lapse- and immunofluorescence microscopy that CDT and other binary actin-ADP-ribosylating toxins, including Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin, induce redistribution of microtubules and formation of long (up to >150 µm) microtubule-based protrusions at the surface of intestinal epithelial cells. The toxins increase the length of decoration of microtubule plus-ends by EB1/3, CLIP-170 and CLIP-115 proteins and cause redistribution of the capture proteins CLASP2 and ACF7 from microtubules at the cell cortex into the cell interior. The CDT-induced microtubule protrusions form a dense meshwork at the cell surface, which wrap and embed bacterial cells, thereby largely increasing the adherence of Clostridia. The study describes a novel type of microtubule structure caused by less efficient microtubule capture and offers a new perspective for the pathogenetic role of CDT and other binary actin-ADP-ribosylating toxins in host–pathogen interactions.


Biochemical and Biophysical Research Communications | 1989

The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3

Klaus Aktories; Ulrich Braun; Sigrid Rösener; Ingo Just; Alan Hall

The ras-related rho A protein expressed in E. coli, was ADP-ribosylated by botulinum ADP-ribosyltransferase C3. C3 also modified the valine-14 mutant rho protein but not the products of H-ras, R-ras, ral, ypt, and rap 1 genes. A ras-rho chimaera consisting of 60 amino acids from the amino terminus of ras fused to 133 amino acids from the carboxy terminus of rho was not modified by C3. Antibodies raised against the porcine brain cytosolic substrate of C3 cross reacted with the rho, valine-14 rho and ras-rho proteins, but not with the gene products of H-ras, R-ras, ral or rap 1. Polyclonal anti-H-ras antibodies cross reacted with H-ras but not with ral, rho, or the C3 substrate purified from porcine brain.


Trends in Microbiology | 2008

Structure and mode of action of clostridial glucosylating toxins: the ABCD model

Thomas Jank; Klaus Aktories

Toxins A and B, which are the major virulence factors of antibiotic-associated diarrhea and pseudomembranous colitis caused by Clostridium difficile, are the prototypes of the family of clostridial glucosylating toxins. The toxins inactivate Rho and Ras proteins by glucosylation. Recent findings on the autocatalytic processing of the toxins and analysis of the crystal structures of their domains have made a revision of the current model of their actions on the eukaryotic target cells necessary.


Journal of Biological Chemistry | 1998

A Common Motif of Eukaryotic Glycosyltransferases Is Essential for the Enzyme Activity of Large Clostridial Cytotoxins

Christian Busch; Fred Hofmann; Jörg Selzer; Sean Munro; Dieter Jeckel; Klaus Aktories

A fragment of the N-terminal 546 amino acid residues of Clostridium sordellii lethal toxin possesses full enzyme activity and glucosylates Rho and Ras GTPases in vitro. Here we identified several amino acid residues in C. sordellii lethal toxin that are essential for the enzyme activity of the active toxin fragment. Exchange of aspartic acid at position 286 or 288 with alanine or asparagine decreased glucosyltransferase activity by about 5000-fold and completely blocked glucohydrolase activity. No enzyme activity was detected with the double mutant D286A/D288A. Whereas the wild-type fragment of C. sordelliilethal toxin was labeled by azido-UDP-glucose after UV irradiation, mutation of the DXD motif prevented radiolabeling. At high concentrations (10 mm) of manganese ions, the transferase activities of the D286A and D288A mutants but not that of wild-type fragment were increased by about 20-fold. The exchange of Asp270 and Arg273 reduced glucosyltransferase activity by about 200-fold and blocked glucohydrolase activity. The data indicate that the DXD motif, which is highly conserved in all large clostridial cytotoxins and also in a large number of glycosyltransferases, is functionally essential for the enzyme activity of the toxins and may participate in coordination of the divalent cation and/or in the binding of UDP-glucose.


Nature Reviews Microbiology | 2011

Bacterial protein toxins that modify host regulatory GTPases

Klaus Aktories

Many bacterial pathogens produce protein toxins to outmanoeuvre the immune system of the host. Some of these proteins target regulatory GTPases such as those belonging to the RHO family, which control the actin cytoskeleton of the host cell. In this Review, I discuss a diversity of mechanisms that are used by bacterial effectors and toxins to modulate the activity of host GTPases, with a focus on covalent modifications such as ADP-ribosylation, glucosylation, adenylylation, proteolysis, deamidation and transglutamination.

Collaboration


Dive into the Klaus Aktories's collaboration.

Top Co-Authors

Avatar

Ingo Just

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Jank

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar

Karl H. Jakobs

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge