Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carsten Willam is active.

Publication


Featured researches published by Carsten Willam.


Nature Genetics | 2008

Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism

Julián Aragonés; Martin Schneider; Katie Van Geyte; Peter Fraisl; Tom Dresselaers; Massimiliano Mazzone; Ruud Dirkx; Serena Zacchigna; Hélène Lemieux; Nam Ho Jeoung; Diether Lambrechts; Tammie Bishop; Peggy Lafuste; Antonio Diez-Juan; Sarah K. Harten; Pieter Van Noten; Katrien De Bock; Carsten Willam; Marc Tjwa; Alexandra Grosfeld; Rachel Navet; Lieve Moons; Thierry Vandendriessche; Christophe Deroose; Bhathiya Wijeyekoon; Johan Nuyts; Bénédicte F. Jordan; Robert Silasi-Mansat; Florea Lupu; Mieke Dewerchin

HIF prolyl hydroxylases (PHD1–3) are oxygen sensors that regulate the stability of the hypoxia-inducible factors (HIFs) in an oxygen-dependent manner. Here, we show that loss of Phd1 lowers oxygen consumption in skeletal muscle by reprogramming glucose metabolism from oxidative to more anaerobic ATP production through activation of a Pparα pathway. This metabolic adaptation to oxygen conservation impairs oxidative muscle performance in healthy conditions, but it provides acute protection of myofibers against lethal ischemia. Hypoxia tolerance is not due to HIF-dependent angiogenesis, erythropoiesis or vasodilation, but rather to reduced generation of oxidative stress, which allows Phd1-deficient myofibers to preserve mitochondrial respiration. Hypoxia tolerance relies primarily on Hif-2α and was not observed in heterozygous Phd2-deficient or homozygous Phd3-deficient mice. Of medical importance, conditional knockdown of Phd1 also rapidly induces hypoxia tolerance. These findings delineate a new role of Phd1 in hypoxia tolerance and offer new treatment perspectives for disorders characterized by oxidative stress.


The FASEB Journal | 2003

Activation of the hypoxia-inducible factor-pathway and stimulation of angiogenesis by application of prolyl hydroxylase inhibitors

Christina Warnecke; Wanja Griethe; Alexander Weidemann; Jan Steffen Jürgensen; Carsten Willam; S. Bachmann; Yuri Ivashchenko; Ingrid Wagner; Ulrich Frei; Michael S. Wiesener; Kai-Uwe Eckardt

Hypoxia‐inducible transcription factors (HIF) mediate complex adaptations to reduced oxygen supply, including neoangiogenesis. Regulation of HIF occurs mainly through oxygen‐dependent destruction of its α subunit. In the presence of oxygen, two HIFα prolyl residues undergo enzymatic hydroxylation, which is required for its proteasomal degradation. We therefore tested whether pharmacological activation of HIFα by hydroxylase inhibitors may provide a novel therapeutic strategy for the treatment of ischemic diseases. Three distinct prolyl 4‐hydroxylase inhibitors—l‐mimosine (l‐Mim), ethyl 3,4‐dihydroxybenzoate (3,4‐DHB), and 6‐chlor‐3‐hydroxychinolin‐2‐carbonic acid‐N‐carboxymethylamid (S956711)—demonstrated similar effects to hypoxia (0.5% O2) by inducing HIFα protein in human and rodent cells. l‐Mim, S956711, and, less effectively, 3,4‐DHB also induced HIF target genes in cultured cells, including glucose transporter 1 and vascular endothelial growth factor, as well as HIF‐dependent reporter gene expression. Systemic administration of l‐Mim and S956711 in rats led to HIFα induction in the kidney. In a sponge model for angiogenesis, repeated local injection of the inhibitors strongly increased invasion of highly vascularized tissue into the sponge centers. In conclusion, structurally distinct inhibitors of prolyl hydroxylation are capable of inducing HIFα and HIF target genes in vitro and in vivo and induce adaptive responses to hypoxia, including angiogenesis.


Journal of Immunology | 2008

Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharide-induced dendritic cell activation and function.

Jonathan Jantsch; Dipshikha Chakravortty; Nadine Turza; Alexander T. Prechtel; Björn Buchholz; Roman G. Gerlach; Melanie Volke; Joachim Gläsner; Christina Warnecke; Michael S. Wiesener; Kai-Uwe Eckardt; Alexander Steinkasserer; Michael Hensel; Carsten Willam

Dendritic cells (DC) play a key role in linking innate and adaptive immunity. In inflamed tissues, where DC become activated, oxygen tensions are usually low. Although hypoxia is increasingly recognized as an important determinant of cellular functions, the consequences of hypoxia and the role of one of the key players in hypoxic gene regulation, the transcription factor hypoxia inducible factor 1α (HIF-1α), are largely unknown. Thus, we investigated the effects of hypoxia and HIF-1α on murine DC activation and function in the presence or absence of an exogenous inflammatory stimulus. Hypoxia alone did not activate murine DC, but hypoxia combined with LPS led to marked increases in expression of costimulatory molecules, proinflammatory cytokine synthesis, and induction of allogeneic lymphocyte proliferation compared with LPS alone. This DC activation was accompanied by accumulation of HIF-1α protein levels, induction of glycolytic HIF target genes, and enhanced glycolytic activity. Using RNA interference techniques, knockdown of HIF-1α significantly reduced glucose use in DC, inhibited maturation, and led to an impaired capability to stimulate allogeneic T cells. Alltogether, our data indicate that HIF-1α and hypoxia play a crucial role for DC activation in inflammatory states, which is highly dependent on glycolysis even in the presence of oxygen.


Journal of The American Society of Nephrology | 2008

HIF Activation Protects From Acute Kidney Injury

Alexander Weidemann; Wanja M. Bernhardt; Bernd Klanke; Christoph Daniel; Björn Buchholz; Valentina Câmpean; Kerstin Amann; Christina Warnecke; Michael S. Wiesener; Kai-Uwe Eckardt; Carsten Willam

The contribution of hypoxia to cisplatin-induced renal tubular injury is controversial. Because the hypoxia-inducible factor (HIF) pathway is a master regulator of adaptation to hypoxia, we measured the effects of cisplatin on HIF accumulation in vitro and in vivo, and tested whether hypoxic preconditioning is protective against cisplatin-induced injury. We found that cisplatin did not stabilize HIF-1alpha protein in vitro or in vivo under normoxic conditions. However, hypoxic preconditioning of cisplatin-treated proximal tubular cells in culture reduced apoptosis in an HIF-1alpha-dependent fashion and increased cell proliferation as measured by BrdU incorporation. In vivo, rats preconditioned with carbon monoxide before cisplatin administration had significantly better renal function than rats kept in normoxic conditions throughout. Moreover, the histomorphological extent of renal damage and tubular apoptosis was reduced by the preconditional treatment. Therefore, development of pharmacologic agents to induce renal HIF might provide a new approach to ameliorate cisplatin-induced nephrotoxicity.


Journal of Biological Chemistry | 2011

Differential Sensitivity of Hypoxia Inducible Factor Hydroxylation Sites to Hypoxia and Hydroxylase Inhibitors

Ya-Min Tian; Kar Kheng Yeoh; Myung Kyu Lee; Tuula Eriksson; Benedikt M. Kessler; Holger B. Kramer; Mariola J. Edelmann; Carsten Willam; Christopher W. Pugh; Christopher J. Schofield; Peter J. Ratcliffe

Hypoxia inducible factor (HIF) is regulated by dual pathways involving oxygen-dependent prolyl and asparaginyl hydroxylation of its α-subunits. Prolyl hydroxylation at two sites within a central degradation domain promotes association of HIF-α with the von Hippel-Lindau ubiquitin E3 ligase and destruction by the ubiquitin-proteasome pathways. Asparaginyl hydroxylation blocks the recruitment of p300/CBP co-activators to a C-terminal activation domain in HIF-α. These hydroxylations are catalyzed by members of the Fe(II) and 2-oxoglutarate (2-OG) oxygenase family. Activity of the enzymes is suppressed by hypoxia, increasing both the abundance and activity of the HIF transcriptional complex. We have used hydroxy residue-specific antibodies to compare and contrast the regulation of each site of prolyl hydroxylation (Pro402, Pro564) with that of asparaginyl hydroxylation (Asn803) in human HIF-1α. Our findings reveal striking differences in the sensitivity of these hydroxylations to hypoxia and to different inhibitor types of 2-OG oxygenases. Hydroxylation at the three sites in endogenous human HIF-1α proteins was suppressed by hypoxia in the order Pro402 > Pro564 > Asn803. In contrast to some predictions from in vitro studies, prolyl hydroxylation was substantially more sensitive than asparaginyl hydroxylation to inhibition by iron chelators and transition metal ions; studies of a range of different small molecule 2-OG analogues demonstrated the feasibility of selectively inhibiting either prolyl or asparaginyl hydroxylation within cells.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Donor treatment with a PHD-inhibitor activating HIFs prevents graft injury and prolongs survival in an allogenic kidney transplant model.

Wanja M. Bernhardt; U. Gottmann; F. Doyon; Björn Buchholz; Valentina Campean; Johannes Schödel; A. Reisenbuechler; S. Klaus; M. Arend; L. Flippin; Carsten Willam; Michael S. Wiesener; B. Yard; Christina Warnecke; Kai-Uwe Eckardt

Long-term survival of renal allografts depends on the chronic immune response and is probably influenced by the initial injury caused by ischemia and reperfusion. Hypoxia-inducible transcription factors (HIFs) are essential for adaptation to low oxygen. Normoxic inactivation of HIFs is regulated by oxygen-dependent hydroxylation of specific prolyl-residues by prolyl-hydroxylases (PHDs). Pharmacological inhibition of PHDs results in HIF accumulation with subsequent activation of tissue-protective genes. We examined the effect of donor treatment with a specific PHD inhibitor (FG-4497) on graft function in the Fisher–Lewis rat model of allogenic kidney transplantation (KTx). Orthotopic transplantation of the left donor kidney was performed after 24 h of cold storage. The right kidney was removed at the time of KTx (acute model) or at day 10 (chronic model). Donor animals received a single dose of FG-4497 (40 mg/kg i.v.) or vehicle 6 h before donor nephrectomy. Recipients were followed up for 10 days (acute model) or 24 weeks (chronic model). Donor preconditioning with FG-4497 resulted in HIF accumulation and induction of HIF target genes, which persisted beyond cold storage. It reduced acute renal injury (serum creatinine at day 10: 0.66 ± 0.20 vs. 1.49 ± 1.36 mg/dL; P < 0.05) and early mortality in the acute model and improved long-term survival of recipient animals in the chronic model (mortality at 24 weeks: 3 of 16 vs. 7 of 13 vehicle-treated animals; P < 0.05). In conclusion, pretreatment of organ donors with FG-4497 improves short- and long-term outcomes after allogenic KTx. Inhibition of PHDs appears to be an attractive strategy for organ preservation that deserves clinical evaluation.


Biochemical Journal | 2008

Hypoxia, via stabilization of the hypoxia-inducible factor HIF-1α, is a direct and sufficient stimulus for brain-type natriuretic peptide induction

Alexander Weidemann; Bernd Klanke; Michael Wagner; Tilmann Volk; Carsten Willam; Michael S. Wiesener; Kai-Uwe Eckardt; Christina Warnecke

BNP (brain-type natriuretic peptide) is a cardiac hormone with systemic haemodynamic effects as well as local cytoprotective and antiproliferative properties. It is induced under a variety of pathophysiological conditions, including decompensated heart failure and myocardial infarction. Since regional hypoxia is a potential common denominator of increased wall stretch and myocardial hypoperfusion, we investigated the direct effects of hypoxia on BNP expression, and the role of the HIF (hypoxia-inducible transcription factor) in BNP regulation. Using an RNase protection assay we found a strong hypoxic induction of BNP mRNA expression in different cell lines and in cultured adult rat cardiomyocytes. Systemic hypoxia and exposure to 0.1% CO induced BNP expression in the rodent myocardium in vivo, although this was at a lower amplitude. BNP promoter-driven luciferase expression increased 10-fold after hypoxic stimulation in transient transfections. Inactivation of four putative HREs (hypoxia-response elements) in the promoter by site-directed mutagenesis revealed that the HRE at -466 nt was responsible for hypoxic promoter activation. A functional CACAG motif was identified upstream of this HRE. The HIF-1 complex bound specifically and inducibly only to the HRE at -466 nt, as shown by EMSA (electrophoretic mobility-shift assay) and ChIP (chromatin immunoprecipitation). siRNA (small interfering RNA)-mediated knockdown of HIF-1alpha, but not HIF-2alpha, interfered with hypoxic BNP mRNA induction and BNP promoter activation, confirming that BNP is a specific HIF-1alpha target gene. In conclusion, BNP appears to be part of the protective program steered by HIF-1 in response to oxygen deprivation. Induction of BNP may therefore contribute to the potential benefits of pharmacological HIF inducers in the treatment of ischaemic heart disease and heart failure.


Methods in Enzymology | 2007

Organ Protection by Hypoxia and Hypoxia‐Inducible Factors

Wanja M. Bernhardt; Christina Warnecke; Carsten Willam; Tetsuhiro Tanaka; Michael S. Wiesener; Kai-Uwe Eckardt

Since the first description of a protective effect of hypoxic preconditioning in the heart, the principle of reducing tissue injury in response to ischemia by prior exposure to hypoxia was confirmed in a number of cells and organs. However, despite impressive preclinical results, hypoxic preconditioning has so far failed to reach clinical application. Nevertheless, it remains of significant interest to induce genes that are normally activated during hypoxia and ischemia as part of an endogenous escape mechanism prior to or during the early phase of an ischemic insult. This approach has recently been greatly facilitated by the identification of hypoxia-inducible factors (HIFs), transcription factors that operate as a master switch in the cellular response to hypoxia. Far more than 100 target genes are regulated by HIF, including genes such as erythropoietin and hemoxygenase-1, which have been shown to be tissue-protective. The identification of small molecule inhibitors of the oxygen-sensing HIF-prolyl hydroxlases now offers the possibility to mimic the hypoxic response by pharmacological stabilization of HIF in order to achieve organ protection. Oxygen-independent activation of HIF is therefore a promising therapeutic strategy for the prevention of organ injury and failure.


American Journal of Pathology | 2009

HIF-prolyl hydroxylases in the rat kidney: physiologic expression patterns and regulation in acute kidney injury.

Johannes Schödel; Bernd Klanke; Alexander Weidemann; Björn Buchholz; Wanja M. Bernhardt; Marko Bertog; Kerstin Amann; Christoph Korbmacher; Michael S. Wiesener; Christina Warnecke; Armin Kurtz; Kai-Uwe Eckardt; Carsten Willam

Hypoxia-inducible transcription factors (HIFs) play important roles in the response of the kidney to systemic and regional hypoxia. Degradation of HIFs is mediated by three oxygen-dependent HIF-prolyl hydroxylases (PHDs), which have partially overlapping characteristics. Although PHD inhibitors, which can induce HIFs in the presence of oxygen, are already in clinical development, little is known about the expression and regulation of these enzymes in the kidney. Therefore, we investigated the expression levels of the three PHDs in both isolated tubular cells and rat kidneys. All three PHDs were present in the kidney and were expressed predominantly in three different cell populations: (a) in distal convoluted tubules and collecting ducts (PHD1,2,3), (b) in glomerular podocytes (PHD1,3), and (c) in interstitial fibroblasts (PHD1,3). Higher levels of PHDs were found in tubular segments of the inner medulla where oxygen tensions are known to be physiologically low. PHD expression levels were unchanged in HIF-positive tubular and interstitial cells after induction by systemic hypoxia. In rat models of acute renal injury, changes in PHD expression levels were variable; while cisplatin and ischemia/reperfusion led to significant decreases in PHD2 and 3 expression levels, no changes were seen in a model of contrast media-induced nephropathy. These results implicate the non-uniform expression of HIF-regulating enzymes that modify the hypoxic response in the kidney under both regional and temporal conditions.


Journal of Leukocyte Biology | 2011

Toll-like receptor activation and hypoxia use distinct signaling pathways to stabilize hypoxia-inducible factor 1α (HIF1A) and result in differential HIF1A-dependent gene expression.

Jonathan Jantsch; Melanie Wiese; Johannes Schödel; Kirstin Castiglione; Joachim Gläsner; Sophie Kolbe; David R. Mole; Ulrike Schleicher; Kai-Uwe Eckardt; Michael Hensel; Roland Lang; Christian Bogdan; Markus Schnare; Carsten Willam

HIF1A is a transcription factor that plays a central role for the adaptation to tissue hypoxia and for the inflammatory response of myeloid cells, including DCs. HIF1A is stabilized by hypoxia but also by TLR ligands under normoxic conditions. The underlying signaling events leading to the accumulation of HIF1A in the presence of oxygen are still poorly understood. Here, we show that in contrast to hypoxic stabilization of HIF1A, normoxic, TLR‐mediated HIF1A accumulation in DCs follows a different pathway that predominantly requires MYD88‐dependent NF‐κB activity. The TLR‐induced HIF1A controls a subset of proinflammatory genes that are insufficiently induced following hypoxia‐mediated HIF1A induction. Thus, TLR activation and hypoxia stabilize HIF1A via distinct signaling pathways, resulting in differential HIF1A‐dependent gene expression.

Collaboration


Dive into the Carsten Willam's collaboration.

Top Co-Authors

Avatar

Kai-Uwe Eckardt

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Gunnar Schley

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Michael S. Wiesener

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Christina Warnecke

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Bernd Klanke

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Wanja M. Bernhardt

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Kerstin Amann

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Armin Kurtz

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge