Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gunnar Schley is active.

Publication


Featured researches published by Gunnar Schley.


PLOS ONE | 2009

Evidence for a lack of a direct transcriptional suppression of the iron regulatory peptide hepcidin by hypoxia-inducible factors.

Melanie Volke; Daniel P. Gale; Ulrike Maegdefrau; Gunnar Schley; Bernd Klanke; Anja-Katrin Bosserhoff; Patrick H. Maxwell; Kai-Uwe Eckardt; Christina Warnecke

Background Hepcidin is a major regulator of iron metabolism and plays a key role in anemia of chronic disease, reducing intestinal iron uptake and release from body iron stores. Hypoxia and chemical stabilizers of the hypoxia-inducible transcription factor (HIF) have been shown to suppress hepcidin expression. We therefore investigated the role of HIF in hepcidin regulation. Methodology/Principal Findings Hepcidin mRNA was down-regulated in hepatoma cells by chemical HIF stabilizers and iron chelators, respectively. In contrast, the response to hypoxia was variable. The decrease in hepcidin mRNA was not reversed by HIF-1α or HIF-2α knock-down or by depletion of the HIF and iron regulatory protein (IRP) target transferrin receptor 1 (TfR1). However, the response of hepcidin to hypoxia and chemical HIF inducers paralleled the regulation of transferrin receptor 2 (TfR2), one of the genes critical to hepcidin expression. Hepcidin expression was also markedly and rapidly decreased by serum deprivation, independent of transferrin-bound iron, and by the phosphatidylinositol 3 (PI3) kinase inhibitor LY294002, indicating that growth factors are required for hepcidin expression in vitro. Hepcidin promoter constructs mirrored the response of mRNA levels to interleukin-6 and bone morphogenetic proteins, but not consistently to hypoxia or HIF stabilizers, and deletion of the putative HIF binding motifs did not alter the response to different hypoxic stimuli. In mice exposed to carbon monoxide, hypoxia or the chemical HIF inducer N-oxalylglycine, liver hepcidin 1 mRNA was elevated rather than decreased. Conclusions/Significance Taken together, these data indicate that hepcidin is neither a direct target of HIF, nor indirectly regulated by HIF through induction of TfR1 expression. Hepcidin mRNA expression in vitro is highly sensitive to the presence of serum factors and PI3 kinase inhibition and parallels TfR2 expression.


Journal of The American Society of Nephrology | 2011

Hypoxia-Inducible Transcription Factors Stabilization in the Thick Ascending Limb Protects against Ischemic Acute Kidney Injury

Gunnar Schley; Bernd Klanke; Johannes Schödel; Frauke Forstreuter; Deepa Shukla; Armin Kurtz; Kerstin Amann; Michael S. Wiesener; Seymour Rosen; Kai-Uwe Eckardt; Patrick H. Maxwell; Carsten Willam

Hypoxia-inducible transcription factors (HIF) protect cells against oxygen deprivation, and HIF stabilization before ischemia mitigates tissue injury. Because ischemic acute kidney injury (AKI) often involves the thick ascending limb (TAL), modulation of HIF in this segment may be protective. Here, we generated mice with targeted TAL deletion of the von Hippel-Lindau protein (Vhl), which mediates HIF degradation under normoxia, using Tamm-Horsfall protein (Thp)-driven Cre expression. These mice showed strong expression of HIF-1α in TALs but no changes in kidney morphology or function under control conditions. Deficiency of Vhl in the TAL markedly attenuated proximal tubular injury and preserved TAL function following ischemia-reperfusion, which may be partially a result of enhanced expression of glycolytic enzymes and lactate metabolism. These results highlight the importance of the thick ascending limb in the pathogenesis of AKI and suggest that pharmacologically targeting the HIF system may have potential to prevent and mitigate AKI.


PLOS ONE | 2012

Renal Tubular HIF-2α Expression Requires VHL Inactivation and Causes Fibrosis and Cysts

Ruth Schietke; Thomas Hackenbeck; Maxine Tran; Regina Günther; Bernd Klanke; Christina Warnecke; Deepa Shukla; Christian Rosenberger; Robert Koesters; S. Bachmann; Peter Betz; Gunnar Schley; Johannes Schödel; Carsten Willam; Thomas W. Winkler; Kerstin Amann; Kai-Uwe Eckardt; Patrick H. Maxwell; Michael S. Wiesener

The Hypoxia-inducible transcription Factor (HIF) represents an important adaptive mechanism under hypoxia, whereas sustained activation may also have deleterious effects. HIF activity is determined by the oxygen regulated α-subunits HIF-1α or HIF-2α. Both are regulated by oxygen dependent degradation, which is controlled by the tumor suppressor “von Hippel-Lindau” (VHL), the gatekeeper of renal tubular growth control. HIF appears to play a particular role for the kidney, where renal EPO production, organ preservation from ischemia-reperfusion injury and renal tumorigenesis are prominent examples. Whereas HIF-1α is inducible in physiological renal mouse, rat and human tubular epithelia, HIF-2α is never detected in these cells, in any species. In contrast, distinct early lesions of biallelic VHL inactivation in kidneys of the hereditary VHL syndrome show strong HIF-2α expression. Furthermore, knockout of VHL in the mouse tubular apparatus enables HIF-2α expression. Continuous transgenic expression of HIF-2α by the Ksp-Cadherin promotor leads to renal fibrosis and insufficiency, next to multiple renal cysts. In conclusion, VHL appears to specifically repress HIF-2α in renal epithelia. Unphysiological expression of HIF-2α in tubular epithelia has deleterious effects. Our data are compatible with dedifferentiation of renal epithelial cells by sustained HIF-2α expression. However, HIF-2α overexpression alone is insufficient to induce tumors. Thus, our data bear implications for renal tumorigenesis, epithelial differentiation and renal repair mechanisms.


Nephrology Dialysis Transplantation | 2012

The protective effect of prolyl-hydroxylase inhibition against renal ischaemia requires application prior to ischaemia but is superior to EPO treatment

Zhendi Wang; Gunnar Schley; Gazi Türkoglu; Nicolai Burzlaff; Kerstin Amann; Carsten Willam; Kai-Uwe Eckardt; Wanja M. Bernhardt

BACKGROUND Inhibition of the HIF regulating prolyl hydroxylation domain (PHDs) proteins prior to renal injury (preconditioning) has been shown to protect the kidney via activation of hypoxia-inducible transcription factors (HIF). Application of erythropoietin (EPO), one of the HIF target genes, has also been shown to be nephroprotective, and it remains unclear to what extent the effect of HIF induction is mediated by EPO. It is also unknown whether HIF activation after the onset of ischaemia (postconditioning) is still able to protect the kidney. METHODS Using a rat model of renal ischaemia-reperfusion injury, animals were treated with the PHD inhibitor (PHD-I) 2-(1-chloro-4-hydroxyisoquinoline-3-carboxamido) acetate (ICA), vehicle (Veh) or recombinant human EPO (300 IU/kg) 6 h (ICA or Veh) or 30 min (EPO) prior to ischaemia (preconditioning) or with ICA prior to reperfusion (postconditioning). Renal function was assessed at baseline, 24 h and 72 h. After 72 h, kidneys were processed for histology and morphometric analysis. HIF immunohistochemistry and real-time polymerase chain reaction for HIF target genes, including EPO, were performed to evaluate ICA effects. RESULTS ICA treatment resulted in stabilization of HIF-1α and -2α and up-regulation of HIF target genes in a dose-dependent manner. Preconditional activation of HIF by ICA significantly improved serum creatinine levels and renal morphology in comparison to Veh (P < 0.05), while postconditional ICA treatment was ineffective. EPO therapy improved tissue morphology but had no impact on the course of serum creatinine. CONCLUSION These findings are in line with the concept that PHD-Is exert their protective effects through accumulation of HIF target gene products, with time requirements for increased transcription and translation of HIF-dependent genes, and suggest that their renoprotective effect is not predominately mediated by EPO.


PLOS ONE | 2015

Comparison of Plasma and Urine Biomarker Performance in Acute Kidney Injury

Gunnar Schley; Carmen Köberle; Ekaterina Manuilova; Sandra Rutz; Christian Forster; M. Weyand; Ivan Formentini; Rosemarie Kientsch-Engel; Kai-Uwe Eckardt; Carsten Willam

Background New renal biomarkers measured in urine promise to increase specificity for risk stratification and early diagnosis of acute kidney injury (AKI) but concomitantly may be altered by urine concentration effects and chronic renal insufficiency. This study therefore directly compared the performance of AKI biomarkers in urine and plasma. Methods This single-center, prospective cohort study included 110 unselected adults undergoing cardiac surgery with cardiopulmonary bypass between 2009 and 2010. Plasma and/or urine concentrations of creatinine, cystatin C, neutrophil gelatinase-associated lipocalin (NGAL), liver fatty acid-binding protein (L-FABP), kidney injury molecule 1 (KIM1), and albumin as well as 15 additional biomarkers in plasma and urine were measured during the perioperative period. The primary outcome was AKI defined by AKIN serum creatinine criteria within 72 hours after surgery. Results Biomarkers in plasma showed markedly better discriminative performance for preoperative risk stratification and early postoperative (within 24h after surgery) detection of AKI than urine biomarkers. Discriminative power of urine biomarkers improved when concentrations were normalized to urinary creatinine, but urine biomarkers had still lower AUC values than plasma biomarkers. Best diagnostic performance 4h after surgery had plasma NGAL (AUC 0.83), cystatin C (0.76), MIG (0.74), and L-FAPB (0.73). Combinations of multiple biomarkers did not improve their diagnostic power. Preoperative clinical scoring systems (EuroSCORE and Cleveland Clinic Foundation Score) predicted the risk for AKI (AUC 0.76 and 0.71) and were not inferior to biomarkers. Preexisting chronic kidney disease limited the diagnostic performance of both plasma and urine biomarkers. Conclusions In our cohort plasma biomarkers had higher discriminative power for risk stratification and early diagnosis of AKI than urine biomarkers. For preoperative risk stratification of AKI clinical models showed similar discriminative performance to biomarkers. The discriminative performance of both plasma and urine biomarkers was reduced by preexisting chronic kidney disease.


Kidney International | 2014

Anoctamin 1 induces calcium-activated chloride secretion and proliferation of renal cyst–forming epithelial cells

Bjoern Buchholz; Diana Faria; Gunnar Schley; Rainer Schreiber; Kai-Uwe Eckardt; Karl Kunzelmann

Polycystic kidney diseases are characterized by multiple bilateral renal cysts that gradually enlarge and lead to a decline in renal function. Cyst enlargement is driven by transepithelial chloride secretion, stimulated by enhanced levels of cyclic adenosine monophosphate, which activates apical cystic fibrosis transmembrane conductance regulator chloride channels. However, chloride secretion by calcium-dependent chloride channels, activated through stimulation of purinergic receptors, also has a major impact. To identify the molecular basis of calcium-dependent chloride secretion in cyst expansion, we determined the role of anoctamin 1 and 6, two recently discovered calcium-activated chloride channels both of which are expressed in epithelial cells. We found that anoctamin 1, which plays a role in epithelial fluid secretion and proliferation, is strongly expressed in principal-like MDCK cells (PLCs) forming cysts within a collagen matrix, in an embryonic kidney cyst model, and in human autosomal dominant polycystic kidney disease tissue. Knockdown of anoctamin 1 but not anoctamin 6 strongly diminished the calcium-dependent chloride secretion of PLCs. Moreover, two inhibitors of anoctamin ion channels, tannic acid and a more selective inhibitor of anoctamin 1, significantly inhibited PLC cyst growth and cyst enlargement in an embryonic kidney cyst model. Knockdown of ANO1 by morpholino analogs also attenuated embryonic cyst growth. Thus, calcium-activated chloride secretion by anoctamin 1 appears to be a crucial component of renal cyst growth.


Cell Reports | 2015

Ferritin-Mediated Iron Sequestration Stabilizes Hypoxia-Inducible Factor-1α upon LPS Activation in the Presence of Ample Oxygen

Isabel Siegert; Johannes Schödel; Manfred Nairz; Valentin Schatz; Katja Dettmer; Christopher Dick; Joanna Kalucka; Kristin Franke; Martin Ehrenschwender; Gunnar Schley; Angelika Beneke; Jörg Sutter; Matthias Moll; Claus Hellerbrand; Ben Wielockx; Dörthe M. Katschinski; Roland Lang; Bruno Galy; Matthias W. Hentze; Peppi Koivunen; Peter J. Oefner; Christian Bogdan; Günter Weiss; Carsten Willam; Jonathan Jantsch

Both hypoxic and inflammatory conditions activate transcription factors such as hypoxia-inducible factor (HIF)-1α and nuclear factor (NF)-κB, which play a crucial role in adaptive responses to these challenges. In dendritic cells (DC), lipopolysaccharide (LPS)-induced HIF1α accumulation requires NF-κB signaling and promotes inflammatory DC function. The mechanisms that drive LPS-induced HIF1α accumulation under normoxia are unclear. Here, we demonstrate that LPS inhibits prolyl hydroxylase domain enzyme (PHD) activity and thereby blocks HIF1α degradation. Of note, LPS-induced PHD inhibition was neither due to cosubstrate depletion (oxygen or α-ketoglutarate) nor due to increased levels of reactive oxygen species, fumarate, and succinate. Instead, LPS inhibited PHD activity through NF-κB-mediated induction of the iron storage protein ferritin and subsequent decrease of intracellular available iron, a critical cofactor of PHD. Thus, hypoxia and LPS both induce HIF1α accumulation via PHD inhibition but deploy distinct molecular mechanisms (lack of cosubstrate oxygen versus deprivation of co-factor iron).


Journal of The American Society of Nephrology | 2014

Hypoxia-Inducible Factor-1α Causes Renal Cyst Expansion through Calcium-Activated Chloride Secretion

Bjoern Buchholz; Gunnar Schley; Diana Faria; Sven Kroening; Carsten Willam; Rainer Schreiber; Bernd Klanke; Nicolai Burzlaff; Jonathan Jantsch; Karl Kunzelmann; Kai-Uwe Eckardt

Polycystic kidney diseases are characterized by numerous bilateral renal cysts that continuously enlarge and, through compression of intact nephrons, lead to a decline in kidney function over time. We previously showed that cyst enlargement is accompanied by regional hypoxia, which results in the stabilization of hypoxia-inducible transcription factor-1α (HIF-1α) in the cyst epithelium. Here we demonstrate a correlation between cyst size and the expression of the HIF-1α-target gene, glucose transporter 1, and report that HIF-1α promotes renal cyst growth in two in vitro cyst models-principal-like MDCK cells (plMDCKs) within a collagen matrix and cultured embryonic mouse kidneys stimulated with forskolin. In both models, augmenting HIF-1α levels with the prolyl hydroxylase inhibitor 2-(1-chloro-4-hydroxyisoquinoline-3-carboxamido) acetate enhanced cyst growth. In addition, inhibition of HIF-1α degradation through tubule-specific knockdown of the von Hippel-Lindau tumor suppressor increased cyst size in the embryonic kidney cyst model. In contrast, inhibition of HIF-1α by chetomin and knockdown of HIF-1α both decreased cyst growth in these models. Consistent with previous reports, plMDCK cyst enlargement was driven largely by transepithelial chloride secretion, which consists, in part, of a calcium-activated chloride conductance. plMDCKs deficient for HIF-1α almost completely lacked calcium-activated chloride secretion. We conclude that regional hypoxia in renal cysts contributes to cyst growth, primarily due to HIF-1α-dependent calcium-activated chloride secretion. These findings identify the HIF system as a novel target for inhibition of cyst growth.


Journal of Biological Chemistry | 2014

The Hypoxia-inducible Factor Renders Cancer Cells More Sensitive to Vitamin C-induced Toxicity

Weihua Tian; Yu Wang; Yan Xu; Xiangpeng Guo; Bo Wang; Li Sun; Longqi Liu; Fenggong Cui; Qiang Zhuang; Xichen Bao; Gunnar Schley; Tung-Liang Chung; Andrew L. Laslett; Carsten Willam; Baoming Qin; Patrick H. Maxwell; Miguel A. Esteban

Background: There is renewed interest in the possibility of using Vc as an anticancer agent. Results: Activation of HIF triggers a Warburg effect that renders cancer cells more sensitive to Vc-induced toxicity. Conclusion: These results provide a link between the metabolic state and the susceptibility to Vc. Significance: Our work helps to understand the preferential toxicity of Vc toward cancer cells. Megadose vitamin C (Vc) is one of the most enduring alternative treatments for diverse human diseases and is deeply engrafted in popular culture. Preliminary studies in the 1970s described potent effects of Vc on prolonging the survival of patients with terminal cancer, but these claims were later criticized. An improved knowledge of the pharmacokinetics of Vc and recent reports using cancer cell lines have renewed the interest in this subject. Despite these findings, using Vc as an adjuvant for anticancer therapy remains questionable, among other things because there is no proper mechanistic understanding. Here, we show that a Warburg effect triggered by activation of the hypoxia-inducible factor (HIF) pathway greatly enhances Vc-induced toxicity in multiple cancer cell lines, including von Hippel-Lindau (VHL)-defective renal cancer cells. HIF increases the intracellular uptake of oxidized Vc through its transcriptional target glucose transporter 1 (GLUT1), synergizing with the uptake of its reduced form through sodium-dependent Vc transporters. The resulting high levels of intracellular Vc induce oxidative stress and massive DNA damage, which then causes metabolic exhaustion by depleting cellular ATP reserves. HIF-positive cells are particularly sensitive to Vc-induced ATP reduction because they mostly rely on the rather inefficient glycolytic pathway for energy production. Thus, our experiments link Vc-induced toxicity and cancer metabolism, providing a new explanation for the preferential effect of Vc on cancer cells.


Nephrology Dialysis Transplantation | 2011

The Raf kinase inhibitor PLX5568 slows cyst proliferation in rat polycystic kidney disease but promotes renal and hepatic fibrosis

Bjoern Buchholz; Bernd Klanke; Gunnar Schley; Gideon Bollag; James Tsai; Sven Kroening; Daisuke Yoshihara; Darren P. Wallace; Bettina Kraenzlin; Norbert Gretz; Peter Hirth; Kai-Uwe Eckardt; Wanja M. Bernhardt

BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a common cause of renal failure. Aberrant epithelial cell proliferation is a major cause of progressive cyst enlargement in ADPKD. Since activation of the Ras/Raf signaling system has been detected in cyst-lining epithelia, inhibition of Raf kinase has been proposed as an approach to retard the progression of ADPKD. Methods and results. PLX5568, a novel selective small molecule inhibitor of Raf kinases, attenuated proliferation of human ADPKD cyst epithelial cells. It reduced in vitro cyst growth of Madin-Darby Canine Kidney cells and of human ADPKD cells within a collagen gel. In male cy/+ rats with polycystic kidneys, PLX5568 inhibited renal cyst growth along with a significant reduction in the number of proliferating cell nuclear antigen- and phosphorylated extracellular signal-regulated kinase-positive cyst-lining epithelial cells. Furthermore, treated animals showed increased capacity to concentrate urine. However, PLX5568 did not lead to a consistent improvement of renal function. Moreover, although relative cyst volume was decreased, total kidney-to-body weight ratio was not significantly reduced by PLX5568. Further analyses revealed a 2-fold increase of renal and hepatic fibrosis in animals treated with PLX5568. CONCLUSIONS PLX5568 attenuated cyst enlargement in vitro and in a rat model of ADPKD without improving kidney function, presumably due to increased renal fibrosis. These data suggest that effective therapies for the treatment of ADPKD will need to target fibrosis as well as the growth of cysts.

Collaboration


Dive into the Gunnar Schley's collaboration.

Top Co-Authors

Avatar

Carsten Willam

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Bernd Klanke

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Bjoern Buchholz

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Kerstin Amann

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Nicolai Burzlaff

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl Kunzelmann

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Andre Kraus

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge