Carsten Wrenger
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carsten Wrenger.
International Journal of Molecular Sciences | 2013
Dieudonne Ndjonka; Ludmila Nakamura Rapado; Ariel Mariano Silber; Eva Liebau; Carsten Wrenger
Infectious diseases caused by parasites are a major threat for the entire mankind, especially in the tropics. More than 1 billion people world-wide are directly exposed to tropical parasites such as the causative agents of trypanosomiasis, leishmaniasis, schistosomiasis, lymphatic filariasis and onchocerciasis, which represent a major health problem, particularly in impecunious areas. Unlike most antibiotics, there is no “general” antiparasitic drug available. Here, the selection of antiparasitic drugs varies between different organisms. Some of the currently available drugs are chemically de novo synthesized, however, the majority of drugs are derived from natural sources such as plants which have subsequently been chemically modified to warrant higher potency against these human pathogens. In this review article we will provide an overview of the current status of plant derived pharmaceuticals and their chemical modifications to target parasite-specific peculiarities in order to interfere with their proliferation in the human host.
Molecular Microbiology | 2004
Carsten Wrenger; Sylke Müller
Lipoic acid is an essential cofactor of α‐keto acid dehydrogenase complexes (KADHCs). This study shows that Plasmodium falciparum possesses two distinct lipoylation pathways that are found in separate subcellular localizations. Lipoic acid synthesis comprising lipoic acid synthase and lipoyl‐ACP:protein N‐lipoyl transferase is present in the parasites apicoplast, whereas the second pathway consisting of lipoic acid protein ligase is located in the parasites mitochondrion. The two localizations were established by overexpressing green fluorescent protein fusions of the N‐terminal sequences of lipoic acid synthase and lipoic acid protein ligase in intraerythrocytic stages of P. falciparum. Northern and Western blot analyses revealed that the genes/proteins encoding lipoic acid synthase, lipoyl‐ACP:protein N‐lipoyl transferase and lipoic acid protein ligase are expressed maximally in the early and late stages of P. falciparum erythrocytic development. The functionality of the three proteins was proven by complementation of bacteria deficient in lipA and lipB. Our results show that P. falciparum possesses two independent pathways, with different locations, responsible for the post‐translational modification of KADHCs. Both pathways fundamentally differ from those in the human host. As KADHCs provide metabolites that are required for essential biosynthetic processes such as fatty acid biosynthesis and haem biosynthesis, the two lipoylation pathways of P. falciparum might be attractive therapeutic targets against malaria.
Cytometry Part A | 2009
Henning Ulrich; Carsten Wrenger
RNA and DNA aptamers developed by an in vitro selection process, Systematic Evolution of Ligands by EXponential enrichment (SELEX), comprise a novel class of high‐affinity and specific capture agents, which can be easily modified for cytometry and in vivo applications. A novel application of this technique (Cell SELEX) explores the expression of cell surface epitopes that differ between two given cell types or between healthy and diseased cells. Using whole cells as targets, aptamer libraries can be identified that bind to biomarkers expressed by target cells and not by any other cells. Aptamers have been developed that specifically interact with cell surface epitopes of trypanosomes or distinguish between the differences in molecular signature of somatic and cancer cells. Aside from its use for target cell identification by image and flow cytometry and laser‐scanning microscopy, aptamers can be used for ligand‐mediated purification and identification of their binding proteins in target cell membranes. In this review, we discuss an approach for the development of aptamers targeting parasite‐derived surface proteins of Trypanosoma and Plasmodium.
Molecular and Biochemical Parasitology | 2008
Ingrid B. Müller; Robin Das Gupta; Kai Lüersen; Carsten Wrenger; Rolf D. Walter
More than 30 years ago the potent ornithine decarboxylase inhibitor difluoromethylornithine (DFMO) was designed as new anticancer drug. Its efficacy was not as expected since the polyamine metabolism in mammalian cells seemed to be far more complex. However when DFMO was applied to African trypanosomes its effect on this protozoan parasite was highly convincing. Thenceforward many researchers tested DFMO and also other polyamine synthesis inhibitors against different parasites among them the causative agent of malaria Plasmodium. This review recapitulates the different attempts to interfere chemically with the plasmodial polyamine metabolism, the impact on the disease as well as its biochemical and molecular background. It will show that this fast proliferating organism depends for growth on high amounts of polyamines and that Plasmodium has its own and unique polyamine synthesis, differing highly from the mammalian one mainly in the arrangement of the key enzymes, S-adenosylmethionine decarboxylase and ornithine decarboxylase (AdoMetDC/ODC), on a bifunctional protein.
PLOS ONE | 2009
Ingrid B. Müller; Fang Wu; Bärbel Bergmann; Julia Knöckel; Rolf D. Walter; Heinz Gehring; Carsten Wrenger
The human malaria parasite Plasmodium falciparum is able to synthesize de novo pyridoxal 5-phosphate (PLP), a crucial cofactor, during erythrocytic schizogony. However, the parasite possesses additionally a pyridoxine/pyridoxal kinase (PdxK) to activate B6 vitamers salvaged from the host. We describe a strategy whereby synthetic pyridoxyl-amino acid adducts are channelled into the parasite. Trapped upon phosphorylation by the plasmodial PdxK, these compounds block PLP-dependent enzymes and thus impair the growth of P. falciparum. The novel compound PT3, a cyclic pyridoxyl-tryptophan methyl ester, inhibited the proliferation of Plasmodium very efficiently (IC50-value of 14 µM) without harming human cells. The non-cyclic pyridoxyl-tryptophan methyl ester PT5 and the pyridoxyl-histidine methyl ester PHME were at least one order of magnitude less effective or completely ineffective in the case of the latter. Modeling in silico indicates that the phosphorylated forms of PT3 and PT5 fit well into the PLP-binding site of plasmodial ornithine decarboxylase (PfODC), the key enzyme of polyamine synthesis, consistent with the ability to abolish ODC activity in vitro. Furthermore, the antiplasmodial effect of PT3 is directly linked to the capability of Plasmodium to trap this pyridoxyl analog, as shown by an increased sensitivity of parasites overexpressing PfPdxK in their cytosol, as visualized by GFP fluorescence.
Trends in Parasitology | 2010
Ingrid B. Müller; John E. Hyde; Carsten Wrenger
The malaria parasite Plasmodium falciparum depends primarily on nutrient sources from its human host. Most compounds, such as glucose, purines, amino acids, as well as cofactors and vitamins, are abundantly available in the host cell, and can be readily salvaged by the parasite. However, in some cases the parasite can also synthesize cofactors de novo in reactions that appear to be essential. Importantly, the three biosynthetic pathways that produce vitamins B(1), B(6) and B(9) are absent from the host, but are well established in P. falciparum. This review summarizes and updates the current knowledge of vitamin B de novo synthesis and salvage in P. falciparum and focuses on their potential as targets for drug intervention.
PLOS Pathogens | 2007
Svenja Günther; Lynsey J. M. Wallace; Eva-Maria Patzewitz; Paul J. McMillan; Janet Storm; Carsten Wrenger; Ryan Bissett; Terry K. Smith; Sylke Müller
Lipoic acid (LA) is an essential cofactor of α-keto acid dehydrogenase complexes (KADHs) and the glycine cleavage system. In Plasmodium, LA is attached to the KADHs by organelle-specific lipoylation pathways. Biosynthesis of LA exclusively occurs in the apicoplast, comprising octanoyl-[acyl carrier protein]: protein N-octanoyltransferase (LipB) and LA synthase. Salvage of LA is mitochondrial and scavenged LA is ligated to the KADHs by LA protein ligase 1 (LplA1). Both pathways are entirely independent, suggesting that both are likely to be essential for parasite survival. However, disruption of the LipB gene did not negatively affect parasite growth despite a drastic loss of LA (>90%). Surprisingly, the sole, apicoplast-located pyruvate dehydrogenase still showed lipoylation, suggesting that an alternative lipoylation pathway exists in this organelle. We provide evidence that this residual lipoylation is attributable to the dual targeted, functional lipoate protein ligase 2 (LplA2). Localisation studies show that LplA2 is present in both mitochondrion and apicoplast suggesting redundancy between the lipoic acid protein ligases in the erythrocytic stages of P. falciparum.
Biological Chemistry | 2006
Carsten Wrenger; Marie-Luise Eschbach; Ingrid B. Müller; Nathan P. Laun; Tadhg P. Begley; Rolf D. Walter
Abstract Vitamin B1 (thiamine) is an essential cofactor for several key enzymes of carbohydrate metabolism. Mammals have to salvage this crucial nutrient from their diet to complement their deficiency of de novo synthesis. In contrast, bacteria, fungi, plants and, as reported here, Plasmodium falciparum, possess a vitamin B1 biosynthesis pathway. The plasmodial pathway identified consists of the three vitamin B1 biosynthetic enzymes 5-(2-hydroxy-ethyl)-4-methylthiazole (THZ) kinase (ThiM), 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP)/HMP-P kinase (ThiD) and thiamine phosphate synthase (ThiE). Recombinant PfThiM and PfThiD proteins were biochemically characterised, revealing K m app values of 68 μM for THZ and 12 μM for HMP. Furthermore, the ability of PfThiE for generating vitamin B1 was analysed by a complementation assay with thiE-negative E. coli mutants. All three enzymes are expressed throughout the developmental blood stages, as shown by Northern blotting, which indicates the presence of the vitamin B1 biosynthesis enzymes. However, cultivation of the parasite in minimal medium showed a dependency on the provision of HMP or thiamine. These results demonstrate that the human malaria parasite P. falciparum possesses active vitamin B1 biosynthesis, which depends on external provision of thiamine precursors.
Biochemical Journal | 2004
Lyn-Marie Birkholtz; Carsten Wrenger; Fourie Joubert; Gordon A. Wells; Rolf D. Walter; Abraham I. Louw
Polyamine biosynthesis of the malaria parasite, Plasmodium falciparum, is regulated by a single, hinge-linked bifunctional PfAdoMetDC/ODC [ P. falciparum AdoMetDC (S-adenosylmethionine decarboxylase)/ODC (ornithine decarboxylase)] with a molecular mass of 330 kDa. The bifunctional nature of AdoMetDC/ODC is unique to Plasmodia and is shared by at least three species. The PfAdoMetDC/ODC contains four parasite-specific regions ranging in size from 39 to 274 residues. The significance of the parasite-specific inserts for activity and protein-protein interactions of the bifunctional protein was investigated by a single- and multiple-deletion strategy. Deletion of these inserts in the bifunctional protein diminished the corresponding enzyme activity and in some instances also decreased the activity of the neighbouring, non-mutated domain. Intermolecular interactions between AdoMetDC and ODC appear to be vital for optimal ODC activity. Similar results have been reported for the bifunctional P. falciparum dihydrofolate reductase-thymidylate synthase [Yuvaniyama, Chitnumsub, Kamchonwongpaisan, Vanichtanankul, Sirawaraporn, Taylor, Walkinshaw and Yuthavong (2003) Nat. Struct. Biol. 10, 357-365]. Co-incubation of the monofunctional, heterotetrameric approximately 150 kDa AdoMetDC domain with the monofunctional, homodimeric ODC domain (approximately 180 kDa) produced an active hybrid complex of 330 kDa. The hinge region is required for bifunctional complex formation and only indirectly for enzyme activities. Deletion of the smallest, most structured and conserved insert in the ODC domain had the biggest impact on the activities of both decarboxylases, homodimeric ODC arrangement and hybrid complex formation. The remaining large inserts are predicted to be non-globular regions located on the surface of these proteins. The large insert in AdoMetDC in contrast is not implicated in hybrid complex formation even though distinct interactions between this insert and the two domains are inferred from the effect of its removal on both catalytic activities. Interference with essential protein-protein interactions mediated by parasite-specific regions therefore appears to be a viable strategy to aid the design of selective inhibitors of polyamine metabolism of P. falciparum.
Journal of Separation Science | 2009
Arthur A. Nery; Carsten Wrenger; Henning Ulrich
RNA and DNA aptamers developed by systematic evolution of ligands by exponential enrichment (SELEX) have turned into important tools in diagnostics, research, and therapeutics. Unlike antibodies, high-affinity and specific aptamers identified through an in vitro selection process can be chemically modified to gain nuclease resistances in biological fluids and to extend their bioavailability in animals. Aptamers can be raised against virtually any target including those which are toxic or do not elicit any immune response in animals. They can be developed in automated processes against various protein targets and then easily modified by attaching fluorescence reporters, nanoparticles or biotin moieties, rival antibodies in high-throughput proteomics and cell separations. In this review, we will discuss the high competence of aptamers in recognizing biomarkers and molecular signatures of cell surfaces, and how these unique features can be exploited for the identification and isolation of cancer, stem cells and even detection of parasite-infected cells.