Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thales Kronenberger is active.

Publication


Featured researches published by Thales Kronenberger.


BioMed Research International | 2015

Oxidative stress control by apicomplexan parasites.

Soraya S. Bosch; Thales Kronenberger; Kamila Anna Meissner; Flávia M. Zimbres; Dirk Stegehake; Natália M. Izui; Isolmar Schettert; Eva Liebau; Carsten Wrenger

Apicomplexan parasites cause infectious diseases that are either a severe public health problem or an economic burden. In this paper we will shed light on how oxidative stress can influence the host-pathogen relationship by focusing on three major diseases: babesiosis, coccidiosis, and toxoplasmosis.


BioMed Research International | 2014

Vitamin B6-Dependent Enzymes in the Human Malaria Parasite Plasmodium falciparum: A Druggable Target?

Thales Kronenberger; Jasmin Lindner; Kamila Anna Meissner; Flávia M. Zimbres; Monika A. Coronado; Frank M. Sauer; Isolmar Schettert; Carsten Wrenger

Malaria is a deadly infectious disease which affects millions of people each year in tropical regions. There is no effective vaccine available and the treatment is based on drugs which are currently facing an emergence of drug resistance and in this sense the search for new drug targets is indispensable. It is well established that vitamin biosynthetic pathways, such as the vitamin B6 de novo synthesis present in Plasmodium, are excellent drug targets. The active form of vitamin B6, pyridoxal 5-phosphate, is, besides its antioxidative properties, a cofactor for a variety of essential enzymes present in the malaria parasite which includes the ornithine decarboxylase (ODC, synthesis of polyamines), the aspartate aminotransferase (AspAT, involved in the protein biosynthesis), and the serine hydroxymethyltransferase (SHMT, a key enzyme within the folate metabolism).


Future Medicinal Chemistry | 2013

Targeting the vitamin biosynthesis pathways for the treatment of malaria

Thales Kronenberger; Isolmar Schettert; Carsten Wrenger

The most severe form of malaria is Malaria tropica, caused by Plasmodium falciparum. There are more than 1 billion people that are exposed to malaria parasites leading to more than 500,000 deaths annually. Vaccines are not available and the increasing drug resistance of the parasite prioritizes the need for novel drug targets and chemotherapeutics, which should be ideally designed to target selectively the parasite. In this sense, parasite-specific pathways, such as the vitamin biosyntheses, represent perfect drug-target characteristics because they are absent in humans. In the past, the vitamin B9 (folate) metabolism has been exploited by antifolates to treat infections caused by malaria parasites. Recently, two further vitamin biosynthesis pathways - for the vitamins B6 (pyridoxine) and B1 (thiamine) - have been identified in Plasmodium and analyzed for their suitability to discover new drugs. In this review, the current status of the druggability of plasmodial vitamin biosynthesis pathways is summarized.


Future Medicinal Chemistry | 2017

Studies of Staphylococcus aureus FabI inhibitors: fragment-based approach based on holographic structure–activity relationship analyses

Thales Kronenberger; Leonardo Rander Asse; Carsten Wrenger; Gustavo H. G. Trossini; Kathia M. Honorio; Vinícius G. Maltarollo

AIM FabI is a key enzyme in the fatty acid metabolism of Gram-positive bacteria such as Staphylococcus aureus and is an established drug target for known antibiotics such as triclosan. However, due to increasing antibacterial resistance, there is an urgent demand for new drug discovery. Recently, aminopyridine derivatives have been proposed as promising competitive inhibitors of FabI. METHODS In the present study, holographic structure-activity relationship (HQSAR) analyses were employed for determining structural contributions of a series containing 105 FabI inhibitors. RESULTS & CONCLUSION The final HQSAR model was robust and predictive according to statistical validation (q2 and r2pred equal to 0.696 and 0.854, respectively) and could be further employed to generate fragment contribution maps. Then, final HQSAR model together with FabI active site information can be useful for designing novel bioactive ligands.AIM FabI is a key enzyme in the fatty acid metabolism of Gram-positive bacteria such as Staphylococcus aureus and is an established drug target for known antibiotics such as triclosan. However, due to increasing antibacterial resistance, there is an urgent demand for new drug discovery. Recently, aminopyridine derivatives have been proposed as promising competitive inhibitors of FabI. METHODS In the present study, holographic structure-activity relationship (HQSAR) analyses were employed for determining structural contributions of a series containing 105 FabI inhibitors. RESULTS & CONCLUSION The final HQSAR model was robust and predictive according to statistical validation (q2 and r2pred equal to 0.696 and 0.854, respectively) and could be further employed to generate fragment contribution maps. Then, final HQSAR model together with FabI active site information can be useful for designing novel bioactive ligands.


Journal of Molecular Graphics & Modelling | 2019

In vitro and in silico studies of antioxidant activity of 2-thiazolylhydrazone derivatives

Vinícius G. Maltarollo; Marina Ferrara de Resende; Thales Kronenberger; Cleudiomar Inácio Lino; Maria Clara Pinheiro Duarte Sampaio; Maira Galdino da Rocha Pitta; Moacyr Jesus Barreto de Melo Rêgo; Renata Adriana Labanca; Renata Barbosa de Oliveira

The antioxidant potential of a series of thiazolylhydrazone derivatives was investigated using three different methods namely DPPH, ABTS and FRAP assays. In general, the tested compounds showed higher or comparable activity to that of curcumin, used as positive control. Chemometric analyses demonstrated that the presence of hydrazone moiety is required for the activity of this class of compounds. From these results, compound 4 was identified as the most promising molecule and was then selected for further studies. The antiproliferative effect of compound 4 was evaluated, being active in three (T47D, MDA-MB-231 and SKMEL) of the six cancer cell lines tested, with IC50 values ranging from 15.9 to 31.3 μM. Compound 4 exhibited no detectable cytotoxic effect on peripheral blood mononuclear cells (PBMC) when tested at a concentration of 100 μM, demonstrating good selectivity. From these results, it is possible to infer that there is a correlation between antioxidant capacity and anticancer effects.


Journal of Biomolecular Structure & Dynamics | 2018

On the relationship of anthranilic derivatives structure and the FXR (Farnesoid X receptor) agonist activity

Thales Kronenberger; Björn Windshügel; Carsten Wrenger; Kathia M. Honorio; Vinicius G. Maltarollo

Farnesoid X receptor (FXR) is a nuclear receptor related to lipid and glucose homeostasis and is considered an important molecular target to treatment of metabolic diseases as diabetes, dyslipidemia, and liver cancer. Nowadays, there are several FXR agonists reported in the literature and some of it in clinical trials for liver disorders. Herein, a compound series was employed to generate QSAR models to better understand the structural basis for FXR activation by anthranilic acid derivatives (AADs). Furthermore, here we evaluate the inclusion of the standard deviation (SD) of EC50 values in QSAR models quality. Comparison between the use of experimental variance plus average values in model construction with the standard method of model generation that considers only the average values was performed. 2D and 3D QSAR models based on the AAD data set including SD values showed similar molecular interpretation maps and quality (Q2LOO, Q2(F2), and Q2(F3)), when compared to models based only on average values. SD-based models revealed more accurate predictions for the set of test compounds, with lower mean absolute error indices as well as more residuals near zero. Additionally, the visual interpretation of different QSAR approaches agrees with experimental data, highlighting key elements for understanding the biological activity of AADs. The approach using standard deviation values may offer new possibilities for generating more accurate QSAR models based on available experimental data.


Chemical Biology & Drug Design | 2018

Targeting the Plasmodium falciparum Plasmepsin V by ligand-based virtual screening

Kamila Anna Meissner; Thales Kronenberger; Vinicius G. Maltarollo; Gustavo H. G. Trossini; Carsten Wrenger

Malaria is a devastating disease depending only on chemotherapy as treatment. However, medication is losing efficacy, and therefore, there is an urgent need for the discovery of novel pharmaceutics. Recently, plasmepsin V, an aspartic protease anchored in the endoplasmaic reticulum, was demonstrated as responsible for the trafficking of parasite‐derived proteins to the erythrocytic surface and further validated as a drug target. In this sense, ligand‐based virtual screening has been applied to design inhibitors that target plasmepsin V of P. falciparum (PMV). After screening 5.5 million compounds, four novel plasmepsin inhibitors have been identified which were subsequently analyzed for the potency at the cellular level. Since PMV is membrane‐anchored, the verification in vivo by using transgenic PMV overexpressing P. falciparum cells has been performed in order to evaluate drug efficacy. Two lead compounds, revealing IC50 values were 44.2 and 19.1 μm, have been identified targeting plasmepsin V in vivo and do not significantly affect the cell viability of human cells up to 300 μm. We herein report the use of the consensus of individual virtual screening as a new technique to design new ligands, and we propose two new lead compounds as novel protease inhibitors to target malaria.


Biomolecules | 2018

Molecular Modeling Applied to Nucleic Acid-Based Molecule Development

Arne Krüger; Flávia M. Zimbres; Thales Kronenberger; Carsten Wrenger

Molecular modeling by means of docking and molecular dynamics (MD) has become an integral part of early drug discovery projects, enabling the screening and enrichment of large libraries of small molecules. In the past decades, special emphasis was drawn to nucleic acid (NA)-based molecules in the fields of therapy, diagnosis, and drug delivery. Research has increased dramatically with the advent of the SELEX (systematic evolution of ligands by exponential enrichment) technique, which results in single-stranded DNA or RNA sequences that bind with high affinity and specificity to their targets. Herein, we discuss the role and contribution of docking and MD to the development and optimization of new nucleic acid-based molecules. This review focuses on the different approaches currently available for molecular modeling applied to NA interaction with proteins. We discuss topics ranging from structure prediction to docking and MD, highlighting their main advantages and limitations and the influence of flexibility on their calculations.


Frontiers in Immunology | 2017

Evidence of an Antimicrobial Peptide Signature Encrypted in HECT E3 Ubiquitin Ligases

Ivan Lavander Candido-Ferreira; Thales Kronenberger; Raphael Santa Rosa Sayegh; Isabel de Fátima Correia Batista; Pedro Ismael da Silva Junior

The ubiquitin-proteasome pathway (UPP) is a hallmark of the eukaryotic cell. In jawed vertebrates, it has been co-opted by the adaptive immune system, where proteasomal degradation produces endogenous peptides for major histocompatibility complex class I antigen presentation. However, proteolytic products are also necessary for the phylogenetically widespread innate immune system, as they often play a role as host defense peptides (HDPs), pivotal effectors against pathogens. Here, we report the identification of the arachnid HDP oligoventin, which shares homology to a core member of the UPP, E3 ubiquitin ligases. Oligoventin has broad antimicrobial activity and shows strong synergy with lysozymes. Using computational and phylogenetic approaches, we show high conservation of the oligoventin signature in HECT E3s. In silico simulation of HECT E3s self-proteolysis provides evidence that HDPs can be generated by fine-tuned 26S proteasomal degradation, and therefore are consistent with the hypothesis that oligoventin is a cryptic peptide released by the proteolytic processing of an Nedd4 E3 precursor protein. Finally, we compare the production of HDPs and endogenous antigens from orthologous HECT E3s by proteasomal degradation as a means of analyzing the UPP coupling to metazoan immunity. Our results highlight the functional plasticity of the UPP in innate and adaptive immune systems as a possibly recurrent mechanism to generate functionally diverse peptides.


Current Drug Targets | 2017

Advances and Challenges in Drug Design of PPARδ Ligands

Vinícius G. Maltarollo; Thales Kronenberger; Björn Windshügel; Carsten Wrenger; Gustavo H. G. Trossini; Kathia M. Honorio

BACKGROUND Peroxisome proliferator-activated receptors (PPAR) are nuclear receptors activated by endogenous fatty acids and prostaglandins that are classified into three types: α, γ and δ, which have different functions and tissue distribution. PPAR modulators have been exploited to the treatment of important metabolic diseases, such as type 2 diabetes mellitus and metabolic syndrome, which are considered relevant epidemic diseases currently. Along the last decades, several studies have reported structural differences between the three PPAR subtypes associated with the discovery of selective ligands, dual and pan-agonists. Nowadays, there are several approved drugs that activate PPARα (fibrates) and PPARγ (glitazones), but up to now there is none clinically used drug targeting PPARδ. Additionally, several side-effects associated with the use of PPARα and γ agonists are reported by regulatory agencies, which do not indicate anymore their use as first-line drugs. OBJECTIVE A significant new market has grown in the last years, focusing on the development of new PPARδ agonists as drug candidates to treat metabolic diseases and, in this sense, this study proposes to review the structural requirements to achieve selective PPARδ activation, as well to discuss the most relevant agonists in clinical trials, providing information on the current phase in the drug discovery and design targeting PPARδ. CONCLUSION Several PPARδ ligands with high potency were reported in the literature and were designed or discovered by a combination of experimental and computational approaches. Furthermore, the reported importance of pockets and individual residues at PPARδ binding site as well as the importance of substituent and some physicochemical properties that could help to design of new classes of agonists.

Collaboration


Dive into the Thales Kronenberger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vinicius G. Maltarollo

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cleudiomar Inácio Lino

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge