Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cary Retterer is active.

Publication


Featured researches published by Cary Retterer.


Nature | 2014

Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430

Travis K. Warren; Jay Wells; Rekha G. Panchal; Kelly S. Stuthman; Nicole L. Garza; Sean Van Tongeren; Lian Dong; Cary Retterer; Brett Eaton; Gianluca Pegoraro; Shelley P. Honnold; Shanta Bantia; Pravin L. Kotian; Xilin Chen; Brian R. Taubenheim; Lisa S. Welch; Dena M. Minning; Yarlagadda S. Babu; Sina Bavari

Filoviruses are emerging pathogens and causative agents of viral haemorrhagic fever. Case fatality rates of filovirus disease outbreaks are among the highest reported for any human pathogen, exceeding 90% (ref. 1). Licensed therapeutic or vaccine products are not available to treat filovirus diseases. Candidate therapeutics previously shown to be efficacious in non-human primate disease models are based on virus-specific designs and have limited broad-spectrum antiviral potential. Here we show that BCX4430, a novel synthetic adenosine analogue, inhibits infection of distinct filoviruses in human cells. Biochemical, reporter-based and primer-extension assays indicate that BCX4430 inhibits viral RNA polymerase function, acting as a non-obligate RNA chain terminator. Post-exposure intramuscular administration of BCX4430 protects against Ebola virus and Marburg virus disease in rodent models. Most importantly, BCX4430 completely protects cynomolgus macaques from Marburg virus infection when administered as late as 48 hours after infection. In addition, BCX4430 exhibits broad-spectrum antiviral activity against numerous viruses, including bunyaviruses, arenaviruses, paramyxoviruses, coronaviruses and flaviviruses. This is the first report, to our knowledge, of non-human primate protection from filovirus disease by a synthetic drug-like small molecule. We provide additional pharmacological characterizations supporting the potential development of BCX4430 as a countermeasure against human filovirus diseases and other viral diseases representing major public health threats.


Journal of Virology | 2010

Infectious Lassa virus, but not filoviruses, is restricted by BST-2/tetherin.

Sheli R. Radoshitzky; Lian Dong; Xiaoli Chi; Jeremiah C. Clester; Cary Retterer; Kevin B. Spurgers; Jens H. Kuhn; Sarah Sandwick; Gordon Ruthel; Krishna P. Kota; Dutch Boltz; Travis K. Warren; Philip J. Kranzusch; Sean P. J. Whelan; Sina Bavari

ABSTRACT Bone marrow stromal antigen 2 (BST-2/tetherin) is a cellular membrane protein that inhibits the release of HIV-1. We show for the first time, using infectious viruses, that BST-2 also inhibits egress of arenaviruses but has no effect on filovirus replication and spread. Specifically, infectious Lassa virus (LASV) release significantly decreased or increased in human cells in which BST-2 was either stably expressed or knocked down, respectively. In contrast, replication and spread of infectious Zaire ebolavirus (ZEBOV) and Lake Victoria marburgvirus (MARV) were not affected by these conditions. Replication of infectious Rift Valley fever virus (RVFV) and cowpox virus (CPXV) was also not affected by BST-2 expression. Elevated cellular levels of human or murine BST-2 inhibited the release of virus-like particles (VLPs) consisting of the matrix proteins of multiple highly virulent NIAID Priority Pathogens, including arenaviruses (LASV and Machupo virus [MACV]), filoviruses (ZEBOV and MARV), and paramyxoviruses (Nipah virus). Although the glycoproteins of filoviruses counteracted the antiviral activity of BST-2 in the context of VLPs, they could not rescue arenaviral (LASV and MACV) VLP release upon BST-2 overexpression. Furthermore, we did not observe colocalization of filoviral glycoproteins with BST-2 during infection with authentic viruses. None of the arenavirus-encoded proteins rescued budding of VLPs in the presence of BST-2. Our results demonstrate that BST-2 might be a broad antiviral factor with the ability to restrict release of a wide variety of human pathogens. However, at least filoviruses, RVFV, and CPXV are immune to its inhibitory effect.


Journal of Virology | 2013

IFITM-2 and IFITM-3 but Not IFITM-1 Restrict Rift Valley Fever Virus

Rajini R. Mudhasani; Julie P. Tran; Cary Retterer; Sheli R. Radoshitzky; Krishna P. Kota; Louis A. Altamura; Jeffrey M. Smith; Beverly Z. Packard; Jens H. Kuhn; Julie Costantino; Aura R. Garrison; Connie S. Schmaljohn; I-Chueh Huang; Michael Farzan; Sina Bavari

ABSTRACT We show that interferon-induced transmembrane protein 1 (IFITM-1), IFITM-2, and IFITM-3 exhibit a broad spectrum of antiviral activity against several members of the Bunyaviridae family, including Rift Valley fever virus (RVFV), La Crosse virus, Andes virus, and Hantaan virus, all of which can cause severe disease in humans and animals. We found that RVFV was restricted by IFITM-2 and -3 but not by IFITM-1, whereas the remaining viruses were equally restricted by all IFITMs. Indeed, at low doses of alpha interferon (IFN-α), IFITM-2 and -3 mediated more than half of the antiviral activity of IFN-α against RVFV. IFITM-2 and -3 restricted RVFV infection mostly by preventing virus membrane fusion with endosomes, while they had no effect on virion attachment to cells, endocytosis, or viral replication kinetics. We found that large fractions of IFITM-2 and IFITM-3 occupy vesicular compartments that are distinct from the vesicles coated by IFITM-1. In addition, although overexpression of all IFITMs expanded vesicular and acidified compartments within cells, there were marked phenotypic differences among the vesicular compartments occupied by IFITMs. Collectively, our data provide new insights into the possible mechanisms by which the IFITM family members restrict distinct viruses.


Journal of Virology | 2011

Ebolavirus Δ-Peptide Immunoadhesins Inhibit Marburgvirus and Ebolavirus Cell Entry

Sheli R. Radoshitzky; Kelly L. Warfield; Xiaoli Chi; Lian Dong; Krishna P. Kota; Steven B. Bradfute; Jacqueline D. Gearhart; Cary Retterer; Philip J. Kranzusch; John Misasi; Marc A. Hogenbirk; Victoria Wahl-Jensen; Viktor E. Volchkov; James M. Cunningham; Peter B. Jahrling; M. Javad Aman; Sina Bavari; Michael Farzan; Jens H. Kuhn

ABSTRACT With the exception of Reston and Lloviu viruses, filoviruses (marburgviruses, ebolaviruses, and “cuevaviruses”) cause severe viral hemorrhagic fevers in humans. Filoviruses use a class I fusion protein, GP1,2, to bind to an unknown, but shared, cell surface receptor to initiate virus-cell fusion. In addition to GP1,2, ebolaviruses and cuevaviruses, but not marburgviruses, express two secreted glycoproteins, soluble GP (sGP) and small soluble GP (ssGP). All three glycoproteins have identical N termini that include the receptor-binding region (RBR) but differ in their C termini. We evaluated the effect of the secreted ebolavirus glycoproteins on marburgvirus and ebolavirus cell entry, using Fc-tagged recombinant proteins. Neither sGP-Fc nor ssGP-Fc bound to filovirus-permissive cells or inhibited GP1,2-mediated cell entry of pseudotyped retroviruses. Surprisingly, several Fc-tagged Δ-peptides, which are small C-terminal cleavage products of sGP secreted by ebolavirus-infected cells, inhibited entry of retroviruses pseudotyped with Marburg virus GP1,2, as well as Marburg virus and Ebola virus infection in a dose-dependent manner and at low molarity despite absence of sequence similarity to filovirus RBRs. Fc-tagged Δ-peptides from three ebolaviruses (Ebola virus, Sudan virus, and Taï Forest virus) inhibited GP1,2-mediated entry and infection of viruses comparably to or better than the Fc-tagged RBRs, whereas the Δ-peptide-Fc of an ebolavirus nonpathogenic for humans (Reston virus) and that of an ebolavirus with lower lethality for humans (Bundibugyo virus) had little effect. These data indicate that Δ-peptides are functional components of ebolavirus proteomes. They join cathepsins and integrins as novel modulators of filovirus cell entry, might play important roles in pathogenesis, and could be exploited for the synthesis of powerful new antivirals.


Antimicrobial Agents and Chemotherapy | 2011

Alkylated Porphyrins Have Broad Antiviral Activity against Hepadnaviruses, Flaviviruses, Filoviruses, and Arenaviruses

Haitao Guo; Xiaoben Pan; Richeng Mao; Xianchao Zhang; Lijuan Wang; Xuanyong Lu; Jinhong Chang; Ju-Tao Guo; Shendra Passic; Fred C. Krebs; Brian Wigdahl; Travis K. Warren; Cary Retterer; Sina Bavari; Xiaodong Xu; Andrea Cuconati; Timothy M. Block

ABSTRACT We screened ∼2,200 compounds known to be safe in people for the ability to reduce the amount of virion-associated hepatitis B virus (HBV) DNA in the culture medium of producer cells. These efforts led to the discovery of an alkylated porphyrin, chlorophyllide, as the compound that achieved the greatest reduction in signal. Here we report that chlorophyllide directly and quantitatively disrupted HBV virions at micromolar concentrations, resulting in the loss of all detectable virion DNA, without detectably affecting cell viability or intracellular viral gene products. Chemophores of chlorophyllide were also tested. Chlorin e6, a metal-free chlorophyllide-like molecule, showed the strongest antiviral activity against HBV as well as profound antiviral effects on other enveloped viruses, such as hepatitis C virus (HCV), human immunodeficiency virus (HIV), dengue virus (DENV), Marburg virus (MARV), Tacaribe virus (TCRV), and Junin viruses (JUNV). Remarkably, chlorin e6 inactivated DENV at subnanomolar-level concentrations. However, the compound had no antiviral effect against encephalomyocarditis virus and adenovirus, suggesting that chlorin e6 may be less active or inactive against nonenveloped viruses. Although other porphyrin derivatives have been previously reported to possess antiviral activity, this is the first analysis of the biochemical impact of chlorophyllide and chlorin e6 against HBV and of the dramatic anti-infectivity impact upon DENV. The possible application of this family of compounds as antiviral agents, as microbicides and systemic virus neutralizing agents, is discussed.


Antiviral Research | 2014

HSPA5 is an essential host factor for Ebola virus infection.

St. Patrick Reid; Amy C. Shurtleff; Julie Costantino; Sarah R. Tritsch; Cary Retterer; Kevin B. Spurgers; Sina Bavari

Development of novel strategies targeting the highly virulent ebolaviruses is urgently required. A proteomic study identified the ER chaperone HSPA5 as an ebolavirus-associated host protein. Here, we show using the HSPA5 inhibitor (-)- epigallocatechin gallate (EGCG) that the chaperone is essential for virus infection, thereby demonstrating a functional significance for the association. Furthermore, in vitro and in vivo gene targeting impaired viral replication and protected animals in a lethal infection model. These findings demonstrate that HSPA5 is vital for replication and can serve as a viable target for the design of host-based countermeasures.


PLOS ONE | 2011

Machupo Virus Glycoprotein Determinants for Human Transferrin Receptor 1 Binding and Cell Entry

Sheli R. Radoshitzky; Lindsay E. Longobardi; Jens H. Kuhn; Cary Retterer; Lian Dong; Jeremiah C. Clester; Krishna P. Kota; John H. Carra; Sina Bavari

Machupo virus (MACV) is a highly pathogenic New World arenavirus that causes hemorrhagic fever in humans. MACV, as well as other pathogenic New World arenaviruses, enter cells after their GP1 attachment glycoprotein binds to their cellular receptor, transferrin receptor 1 (TfR1). TfR1 residues essential for this interaction have been described, and a co-crystal of MACV GP1 bound to TfR1 suggests GP1 residues important for this association. We created MACV GP1 variants and tested their effect on TfR1 binding and virus entry to evaluate the functional significance of some of these and additional residues in human and simian cells. We found residues R111, D123, Y122, and F226 to be essential, D155, and P160 important, and D114, S116, D140, and K169 expendable for the GP1-TfR1 interaction and MACV entry. Several MACV GP1 residues that are critical for the interaction with TfR1 are conserved among other New World arenaviruses, indicating a common basis of receptor interaction. Our findings also open avenues for the rational development of viral entry inhibitors.


PLOS Neglected Tropical Diseases | 2014

High Content Image-Based Screening of a Protease Inhibitor Library Reveals Compounds Broadly Active against Rift Valley Fever Virus and Other Highly Pathogenic RNA Viruses

Rajini R. Mudhasani; Krishna P. Kota; Cary Retterer; Julie P. Tran; Chris A. Whitehouse; Sina Bavari

High content image-based screening was developed as an approach to test a protease inhibitor small molecule library for antiviral activity against Rift Valley fever virus (RVFV) and to determine their mechanism of action. RVFV is the causative agent of severe disease of humans and animals throughout Africa and the Arabian Peninsula. Of the 849 compounds screened, 34 compounds exhibited ≥50% inhibition against RVFV. All of the hit compounds could be classified into 4 distinct groups based on their unique chemical backbone. Some of the compounds also showed broad antiviral activity against several highly pathogenic RNA viruses including Ebola, Marburg, Venezuela equine encephalitis, and Lassa viruses. Four hit compounds (C795-0925, D011-2120, F694-1532 and G202-0362), which were most active against RVFV and showed broad-spectrum antiviral activity, were selected for further evaluation for their cytotoxicity, dose response profile, and mode of action using classical virological methods and high-content imaging analysis. Time-of-addition assays in RVFV infections suggested that D011-2120 and G202-0362 targeted virus egress, while C795-0925 and F694-1532 inhibited virus replication. We showed that D011-2120 exhibited its antiviral effects by blocking microtubule polymerization, thereby disrupting the Golgi complex and inhibiting viral trafficking to the plasma membrane during virus egress. While G202-0362 also affected virus egress, it appears to do so by a different mechanism, namely by blocking virus budding from the trans Golgi. F694-1532 inhibited viral replication, but also appeared to inhibit overall cellular gene expression. However, G202-0362 and C795-0925 did not alter any of the morphological features that we examined and thus may prove to be good candidates for antiviral drug development. Overall this work demonstrates that high-content image analysis can be used to screen chemical libraries for new antivirals and to determine their mechanism of action and any possible deleterious effects on host cellular biology.


Toxins | 2011

Post-Intoxication Inhibition of Botulinum Neurotoxin Serotype A within Neurons by Small-Molecule, Non-Peptidic Inhibitors

Gordon Ruthel; James C. Burnett; Jonathan E. Nuss; Laura M. Wanner; Lyal E. Tressler; Edna Torres-Melendez; Sarah Sandwick; Cary Retterer; Sina Bavari

Botulinum neurotoxins (BoNTs) comprise seven distinct serotypes that inhibit the release of neurotransmitter across neuromuscular junctions, resulting in potentially fatal flaccid paralysis. BoNT serotype A (BoNT/A), which targets synaptosomal-associated protein of 25kDa (SNAP-25), is particularly long-lived within neurons and requires a longer time for recovery of neuromuscular function. There are currently no treatments available to counteract BoNT/A after it has entered the neuronal cytosol. In this study, we examined the ability of small molecule non-peptidic inhibitors (SMNPIs) to prevent SNAP-25 cleavage post-intoxication of neurons. The progressive cleavage of SNAP-25 observed over 5 h following 1 h BoNT/A intoxication was prevented by addition of SMNPIs. In contrast, anti-BoNT/A neutralizing antibodies that strongly inhibited SNAP-25 cleavage when added during intoxication were completely ineffective when added post-intoxication. Although Bafilomycin A1, which blocks entry of BoNT/A into the cytosol by preventing endosomal acidification, inhibited SNAP-25 cleavage post-intoxication, the degree of inhibition was significantly reduced versus addition both during and after intoxication. Post-intoxication application of SMNPIs, on the other hand, was nearly as effective as application both during and after intoxication. Taken together, the results indicate that competitive SMNPIs of BoNT/A light chain can be effective within neurons post-intoxication.


PLOS ONE | 2014

Multi-Faceted Proteomic Characterization of Host Protein Complement of Rift Valley Fever Virus Virions and Identification of Specific Heat Shock Proteins, Including HSP90, as Important Viral Host Factors

Jonathan E. Nuss; Kylene Kehn-Hall; Ashwini Benedict; Julie Costantino; Michael P. Ward; Brian D. Peyser; Cary Retterer; Lyal E. Tressler; Laura M. Wanner; Hugh F. McGovern; Anum Zaidi; Scott M. Anthony; Krishna P. Kota; Sina Bavari; Ramin M. Hakami

Rift Valley fever is a potentially fatal disease of humans and domestic animals caused by Rift Valley fever virus (RVFV). Infection with RVFV in ruminants can cause near 100% abortion rates and recent outbreaks in naïve human populations have suggested case fatality rates of greater than thirty percent. To elucidate the roles that host proteins play during RVFV infection, proteomic analysis of RVFV virions was conducted using complementary analytical approaches, followed by functional validation studies of select identified host factors. Coupling the more traditional Gel LC/MS/MS approach (SDS PAGE followed by liquid chromatography tandem mass spectrometry) with an alternative technique that preserves protein complexes allowed the protein complement of these viral particles to be thoroughly examined. In addition to viral proteins present within the virions and virion-associated host proteins, multiple macromolecular complexes were identified. Bioinformatic analysis showed that host chaperones were among over-represented protein families associated with virions, and functional experiments using siRNA gene silencing and small molecule inhibitors identified several of these heat shock proteins, including heat shock protein 90 (HSP90), as important viral host factors. Further analysis indicated that HSP inhibition effects occur during the replication/transcription phase of the virus life cycle, leading to significant lowering of viral titers without compromising the functional capacity of released virions. Overall, these studies provide much needed further insight into interactions between RVFV and host cells, increasing our understanding of the infection process and suggesting novel strategies for anti-viral development. In particular, considering that several HSP90 inhibitors have been advancing through clinical trials for cancer treatment, these results also highlight the exciting potential of repurposing HSP90 inhibitors to treat RVF.

Collaboration


Dive into the Cary Retterer's collaboration.

Top Co-Authors

Avatar

Sina Bavari

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Krishna P. Kota

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Jens H. Kuhn

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sheli R. Radoshitzky

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Julie P. Tran

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Rajini R. Mudhasani

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Lian Dong

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Rouzbeh Zamani

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Travis K. Warren

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Chris A. Whitehouse

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge