Jens H. Kuhn
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jens H. Kuhn.
Archives of Virology | 2010
Jens H. Kuhn; Stephan Becker; Hideki Ebihara; Thomas W. Geisbert; Karl M. Johnson; Yoshihiro Kawaoka; W. Ian Lipkin; Ana Negredo; Sergey V. Netesov; Stuart T. Nichol; Gustavo Palacios; Clarence J. Peters; Antonio Tenorio; Viktor E. Volchkov; Peter B. Jahrling
The taxonomy of the family Filoviridae (marburgviruses and ebolaviruses) has changed several times since the discovery of its members, resulting in a plethora of species and virus names and abbreviations. The current taxonomy has only been partially accepted by most laboratory virologists. Confusion likely arose for several reasons: species names that consist of several words or which (should) contain diacritical marks, the current orthographic identity of species and virus names, and the similar pronunciation of several virus abbreviations in the absence of guidance for the correct use of vernacular names. To rectify this problem, we suggest (1) to retain the current species names Reston ebolavirus, Sudan ebolavirus, and Zaire ebolavirus, but to replace the name Cote d’Ivoire ebolavirus [sic] with Taï Forest ebolavirus and Lake Victoria marburgvirus with Marburg marburgvirus; (2) to revert the virus names of the type marburgviruses and ebolaviruses to those used for decades in the field (Marburg virus instead of Lake Victoria marburgvirus and Ebola virus instead of Zaire ebolavirus); (3) to introduce names for the remaining viruses reminiscent of jargon used by laboratory virologists but nevertheless different from species names (Reston virus, Sudan virus, Taï Forest virus), and (4) to introduce distinct abbreviations for the individual viruses (RESTV for Reston virus, SUDV for Sudan virus, and TAFV for Taï Forest virus), while retaining that for Marburg virus (MARV) and reintroducing that used over decades for Ebola virus (EBOV). Paying tribute to developments in the field, we propose (a) to create a new ebolavirus species (Bundibugyo ebolavirus) for one member virus (Bundibugyo virus, BDBV); (b) to assign a second virus to the species Marburg marburgvirus (Ravn virus, RAVV) for better reflection of now available high-resolution phylogeny; and (c) to create a new tentative genus (Cuevavirus) with one tentative species (Lloviu cuevavirus) for the recently discovered Lloviu virus (LLOV). Furthermore, we explain the etymological derivation of individual names, their pronunciation, and their correct use, and we elaborate on demarcation criteria for each taxon and virus.
Nature | 2007
Sheli R. Radoshitzky; Jonathan Abraham; Christina F. Spiropoulou; Jens H. Kuhn; Dan Nguyen; Wenhui Li; Jane Nagel; Paul J. Schmidt; Jack H. Nunberg; Nancy C. Andrews; Michael Farzan; Hyeryun Choe
At least five arenaviruses cause viral haemorrhagic fevers in humans. Lassa virus, an Old World arenavirus, uses the cellular receptor α-dystroglycan to infect cells. Machupo, Guanarito, Junin and Sabia viruses are New World haemorrhagic fever viruses that do not use α-dystroglycan. Here we show a specific, high-affinity association between transferrin receptor 1 (TfR1) and the entry glycoprotein (GP) of Machupo virus. Expression of human TfR1, but not human transferrin receptor 2, in hamster cell lines markedly enhanced the infection of viruses pseudotyped with the GP of Machupo, Guanarito and Junin viruses, but not with those of Lassa or lymphocytic choriomeningitis viruses. An anti-TfR1 antibody efficiently inhibited the replication of Machupo, Guanarito, Junin and Sabia viruses, but not that of Lassa virus. Iron depletion of culture medium enhanced, and iron supplementation decreased, the efficiency of infection by Junin and Machupo but not Lassa pseudoviruses. These data indicate that TfR1 is a cellular receptor for New World haemorrhagic fever arenaviruses.
PLOS Pathogens | 2011
I-Chueh Huang; Charles C. Bailey; Jessica L. Weyer; Sheli R. Radoshitzky; Michelle M. Becker; Jessica J. Chiang; Abraham L. Brass; Asim A. Ahmed; Xiaoli Chi; Lian Dong; Lindsay E. Longobardi; Dutch Boltz; Jens H. Kuhn; Stephen J. Elledge; Sina Bavari; Mark R. Denison; Hyeryun Choe; Michael Farzan
Interferon-inducible transmembrane proteins 1, 2, and 3 (IFITM1, 2, and 3) are recently identified viral restriction factors that inhibit infection mediated by the influenza A virus (IAV) hemagglutinin (HA) protein. Here we show that IFITM proteins restricted infection mediated by the entry glycoproteins (GP1,2) of Marburg and Ebola filoviruses (MARV, EBOV). Consistent with these observations, interferon-β specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV. We observed distinct patterns of IFITM-mediated restriction: compared with IAV, the entry processes of MARV and EBOV were less restricted by IFITM3, but more restricted by IFITM1. Moreover, murine Ifitm5 and 6 did not restrict IAV, but efficiently inhibited filovirus entry. We further demonstrate that replication of infectious SARS coronavirus (SARS-CoV) and entry mediated by the SARS-CoV spike (S) protein are restricted by IFITM proteins. The profile of IFITM-mediated restriction of SARS-CoV was more similar to that of filoviruses than to IAV. Trypsin treatment of receptor-associated SARS-CoV pseudovirions, which bypasses their dependence on lysosomal cathepsin L, also bypassed IFITM-mediated restriction. However, IFITM proteins did not reduce cellular cathepsin activity or limit access of virions to acidic intracellular compartments. Our data indicate that IFITM-mediated restriction is localized to a late stage in the endocytic pathway. They further show that IFITM proteins differentially restrict the entry of a broad range of enveloped viruses, and modulate cellular tropism independently of viral receptor expression.
The EMBO Journal | 2005
Wenhui Li; Chengsheng Zhang; Jianhua Sui; Jens H. Kuhn; Michael J. Moore; Shiwen Luo; Swee-Kee Wong; I-Chueh Huang; Keming Xu; Natalya Vasilieva; Akikazu Murakami; Yaqing He; Wayne A. Marasco; Yi Guan; Hyeryun Choe; Michael Farzan
Human angiotensin‐converting enzyme 2 (ACE2) is a functional receptor for SARS coronavirus (SARS‐CoV). Here we identify the SARS‐CoV spike (S)‐protein‐binding site on ACE2. We also compare S proteins of SARS‐CoV isolated during the 2002–2003 SARS outbreak and during the much less severe 2003–2004 outbreak, and from palm civets, a possible source of SARS‐CoV found in humans. All three S proteins bound to and utilized palm‐civet ACE2 efficiently, but the latter two S proteins utilized human ACE2 markedly less efficiently than did the S protein obtained during the earlier human outbreak. The lower affinity of these S proteins could be complemented by altering specific residues within the S‐protein‐binding site of human ACE2 to those of civet ACE2, or by altering S‐protein residues 479 and 487 to residues conserved during the 2002–2003 outbreak. Collectively, these data describe molecular interactions important to the adaptation of SARS‐CoV to human cells, and provide insight into the severity of the 2002–2003 SARS epidemic.
Archives of Virology | 2016
Claudio L. Afonso; Gaya K. Amarasinghe; Krisztián Bányai; Yīmíng Bào; Christopher F. Basler; Sina Bavari; Nicolás Bejerman; Kim R. Blasdell; François Xavier Briand; Thomas Briese; Alexander Bukreyev; Charles H. Calisher; Kartik Chandran; Jiāsēn Chéng; Anna N. Clawson; Peter L. Collins; Ralf G. Dietzgen; Olga Dolnik; Leslie L. Domier; Ralf Dürrwald; John M. Dye; Andrew J. Easton; Hideki Ebihara; Szilvia L. Farkas; Juliana Freitas-Astúa; Pierre Formenty; Ron A. M. Fouchier; Yànpíng Fù; Elodie Ghedin; Michael M. Goodin
In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).
The New England Journal of Medicine | 2015
Suzanne Mate; Jeffrey R. Kugelman; Tolbert Nyenswah; Jason T. Ladner; Michael R. Wiley; Thierry Cordier-Lassalle; Athalia Christie; Gary P. Schroth; Stephen M. Gross; Gloria J. Davies-Wayne; Shivam A. Shinde; Ratnesh Murugan; Sonpon B. Sieh; Moses Badio; Lawrence S. Fakoli; Fahn Taweh; Emmie de Wit; Vincent J. Munster; James Pettitt; Karla Prieto; Ben W. Humrighouse; Ute Ströher; Joseph W. Diclaro; Lisa E. Hensley; Randal J. Schoepp; David Safronetz; Joseph N. Fair; Jens H. Kuhn; David J. Blackley; A. Scott Laney
A suspected case of sexual transmission from a male survivor of Ebola virus disease (EVD) to his female partner (the patient in this report) occurred in Liberia in March 2015. Ebola virus (EBOV) genomes assembled from blood samples from the patient and a semen sample from the survivor were consistent with direct transmission. The genomes shared three substitutions that were absent from all other Western African EBOV sequences and that were distinct from the last documented transmission chain in Liberia before this case. Combined with epidemiologic data, the genomic analysis provides evidence of sexual transmission of EBOV and evidence of the persistence of infective EBOV in semen for 179 days or more after the onset of EVD. (Funded by the Defense Threat Reduction Agency and others.).
Archives of Virology | 2017
M. J. Adams; Elliot J. Lefkowitz; Andrew M. Q. King; Balázs Harrach; Robert L. Harrison; Nick J. Knowles; Andrew M. Kropinski; Mart Krupovic; Jens H. Kuhn; Arcady Mushegian; Max L. Nibert; Sead Sabanadzovic; Hélène Sanfaçon; Stuart G. Siddell; Peter Simmonds; Arvind Varsani; Francisco Murilo Zerbini; Alexander E. Gorbalenya; Andrew J. Davison
This article lists the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2017.
Cell | 2015
Daniel J. Park; Gytis Dudas; Shirlee Wohl; Augustine Goba; Shannon Whitmer; Kristian G. Andersen; Rachel Sealfon; Jason T. Ladner; Jeffrey R. Kugelman; Christian B. Matranga; Sarah M. Winnicki; James Qu; Stephen K. Gire; Adrianne Gladden-Young; Simbirie Jalloh; Dolo Nosamiefan; Nathan L. Yozwiak; Lina M. Moses; Pan-Pan Jiang; Aaron E. Lin; Stephen F. Schaffner; Brian Bird; Jonathan S. Towner; Mambu Mamoh; Michael Gbakie; Lansana Kanneh; David Kargbo; James L.B. Massally; Fatima K. Kamara; Edwin Konuwa
Summary The 2013–2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission.
Nature Reviews Microbiology | 2017
Peter Simmonds; M. J. Adams; Mária Benkő; Mya Breitbart; J. Rodney Brister; Eric B. Carstens; Andrew J. Davison; Eric Delwart; Alexander E. Gorbalenya; Balázs Harrach; Roger Hull; Andrew M. Q. King; Eugene V. Koonin; Mart Krupovic; Jens H. Kuhn; Elliot J. Lefkowitz; Max L. Nibert; Richard J. Orton; Marilyn J. Roossinck; Sead Sabanadzovic; Matthew B. Sullivan; Curtis A. Suttle; Robert B. Tesh; René van der Vlugt; Arvind Varsani; F. Murilo Zerbini
The number and diversity of viral sequences that are identified in metagenomic data far exceeds that of experimentally characterized virus isolates. In a recent workshop, a panel of experts discussed the proposal that, with appropriate quality control, viruses that are known only from metagenomic data can, and should be, incorporated into the official classification scheme of the International Committee on Taxonomy of Viruses (ICTV). Although a taxonomy that is based on metagenomic sequence data alone represents a substantial departure from the traditional reliance on phenotypic properties, the development of a robust framework for sequence-based virus taxonomy is indispensable for the comprehensive characterization of the global virome. In this Consensus Statement article, we consider the rationale for why metagenomic sequence data should, and how it can, be incorporated into the ICTV taxonomy, and present proposals that have been endorsed by the Executive Committee of the ICTV.
Journal of Virology | 2009
Derek Dube; Matthew Brecher; Sue E. Delos; Sean C. Rose; Edward W. Park; Kathryn L. Schornberg; Jens H. Kuhn; Judith M. White
ABSTRACT Entry of ebolavirus (EBOV) into cells is mediated by its glycoprotein (GP1,2), a class I fusion protein whose structure was recently determined (J. E. Lee et al., Nature 454:177-182, 2008). Here we confirmed two major predictions of the structural analysis, namely, the residues in GP1 and GP2 that remain after GP1,2 is proteolytically primed by endosomal cathepsins for fusion and residues in GP1 that are critical for binding to host cells. Mass spectroscopic analysis indicated that primed GP1,2 contains residues 33 to 190 of GP1 and all residues of GP2. The location of the receptor binding site was determined by a two-pronged approach. We identified a small receptor binding region (RBR), residues 90 to 149 of GP1, by comparing the cell binding abilities of four RBR proteins produced in high yield. We characterized the binding properties of the optimal RBR (containing GP1 residues 57 to 149) and then conducted a mutational analysis to identify critical binding residues. Substitutions at four lysines (K95, K114, K115, and K140) decreased binding and the ability of RBR proteins to inhibit GP1,2-mediated infection. K114, K115, and K140 lie in a small region modeled to be located on the top surface of the chalice following proteolytic priming; K95 lies deeper in the chalice bowl. Combined with those of Lee et al., our findings provide structural insight into how GP1,2 is primed for fusion and define the core of the EBOV RBR (residues 90 to 149 of GP1) as a highly conserved region containing a two-stranded β-sheet, the two intra-GP1 disulfide bonds, and four critical Lys residues.
Collaboration
Dive into the Jens H. Kuhn's collaboration.
United States Army Medical Research Institute of Infectious Diseases
View shared research outputsUnited States Army Medical Research Institute of Infectious Diseases
View shared research outputsUnited States Army Medical Research Institute of Infectious Diseases
View shared research outputs