Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Casey C Nestor is active.

Publication


Featured researches published by Casey C Nestor.


Endocrinology | 2010

Neurokinin B Acts via the Neurokinin-3 Receptor in the Retrochiasmatic Area to Stimulate Luteinizing Hormone Secretion in Sheep

Heather J. Billings; John M. Connors; Stephanie Altman; Stanley M. Hileman; Ida Holaskova; Michael N. Lehman; Christina J. McManus; Casey C Nestor; Britni H. Jacobs; Robert L. Goodman

Recent data have demonstrated that mutations in the receptor for neurokinin B (NKB), the NK-3 receptor (NK3R), produce hypogonadotropic hypogonadism in humans. These data, together with reports that NKB expression increases after ovariectomy and in postmenopausal women, have led to the hypothesis that this tachykinin is an important stimulator of GnRH secretion. However, the NK3R agonist, senktide, inhibited LH secretion in rats and mice. In this study, we report that senktide stimulates LH secretion in ewes. A dramatic increase in LH concentrations to levels close to those observed during the preovulatory LH surge was observed after injection of 1 nmol senktide into the third ventricle during the follicular, but not in the luteal, phase. Similar increases in LH secretion occurred after insertion of microimplants containing this agonist into the retrochiasmatic area (RCh) in anestrous or follicular phase ewes. A low-dose microinjection (3 pmol) of senktide into the RCh produced a smaller but significant increase in LH concentrations in anestrous ewes. Moreover, NK3R immunoreactivity was clearly evident in the RCh, although it was not found in A15 dopaminergic cell bodies in this region. These data provide evidence that NKB stimulates LH (and presumably GnRH) secretion in ewes and point to the RCh as one important site of action. Based on these data, and the effects of NK3R mutations in humans, we hypothesize that NKB plays an important stimulatory role in the control of GnRH and LH secretion in nonrodent species.


Endocrinology | 2013

Kisspeptin, Neurokinin B, and Dynorphin Act in the Arcuate Nucleus to Control Activity of the GnRH Pulse Generator in Ewes

Robert L. Goodman; Stanley M. Hileman; Casey C Nestor; Katrina L. Porter; John M. Connors; Steve L. Hardy; Robert P. Millar; Maria Cernea; Lique M. Coolen; Michael N. Lehman

Recent work has led to the hypothesis that kisspeptin/neurokinin B/dynorphin (KNDy) neurons in the arcuate nucleus play a key role in GnRH pulse generation, with kisspeptin driving GnRH release and neurokinin B (NKB) and dynorphin acting as start and stop signals, respectively. In this study, we tested this hypothesis by determining the actions, if any, of four neurotransmitters found in KNDy neurons (kisspeptin, NKB, dynorphin, and glutamate) on episodic LH secretion using local administration of agonists and antagonists to receptors for these transmitters in ovariectomized ewes. We also obtained evidence that GnRH-containing afferents contact KNDy neurons, so we tested the role of two components of these afferents: GnRH and orphanin-FQ. Microimplants of a Kiss1r antagonist briefly inhibited LH pulses and microinjections of 2 nmol of this antagonist produced a modest transitory decrease in LH pulse frequency. An antagonist to the NKB receptor also decreased LH pulse frequency, whereas NKB and an antagonist to the receptor for dynorphin both increased pulse frequency. In contrast, antagonists to GnRH receptors, orphanin-FQ receptors, and the N-methyl-D-aspartate glutamate receptor had no effect on episodic LH secretion. We thus conclude that the KNDy neuropeptides act in the arcuate nucleus to control episodic GnRH secretion in the ewe, but afferent input from GnRH neurons to this area does not. These data support the proposed roles for NKB and dynorphin within the KNDy neural network and raise the possibility that kisspeptin contributes to the control of GnRH pulse frequency in addition to its established role as an output signal from KNDy neurons that drives GnRH pulses.


Endocrinology | 2012

Evidence of a Role for Kisspeptin and Neurokinin B in Puberty of Female Sheep

Casey C Nestor; Amanda M.S. Briscoe; Shay M. Davis; Miro Valent; Robert L. Goodman; Stanley M. Hileman

Puberty onset in female sheep is marked by a decrease in estradiol-negative feedback, allowing for the increase in GnRH and LH pulses that heralds the first ovulation. Based on recent genetic studies in humans, two possible neuropeptides that could promote puberty onset are kisspeptin and neurokinin B (NKB). Our first experiment determined whether the NKB agonist, senktide, could stimulate LH secretion in prepubertal ewes. A second study used prepubertal and postpubertal ewes that were intact or ovariectomized (OVX) to test the hypothesis that expression of kisspeptin and NKB in the arcuate nucleus increased postpubertally. For comparison, kisspeptin and NKB expression in age-matched intact, and castrated males were also examined. In experiment 1, the percentage of ewes showing an LH pulse immediately after injection of senktide (100 μg, 60%; 500 μg, 100%) was greater than that for water-injected controls (experiment 1a, 25%; experiment 1b, 20%). In experiment 2, kisspeptin-positive cell numbers in the arcuate nucleus increased after puberty in intact females and were increased by OVX in prepubertal but not postpubertal ewes. Changes in kisspeptin cell numbers were paralleled by changes in kisspeptin-close contacts onto GnRH neurons in the medial preoptic area. NKB cell numbers did not differ significantly between intact prepubertal and postpubertal ewes but increased with OVX in both age groups. NKB fiber immunoreactivity was greater in postpubertal than in prepubertal intact ewes. In age-matched males, kisspeptin and NKB cell numbers increased with castration, but decreased with age. These results support the hypothesis that kisspeptin is a gatekeeper to female ovine puberty and raise the possibility that NKB may also play a role, albeit through different means.


Endocrinology | 2012

Evidence That Dopamine Acts via Kisspeptin to Hold GnRH Pulse Frequency in Check in Anestrous Ewes

Robert L. Goodman; Matthew Maltby; Robert P. Millar; Stanley M. Hileman; Casey C Nestor; Brant Whited; Ashlie S. Tseng; Lique M. Coolen; Michael N. Lehman

Recent work has implicated stimulatory kisspeptin neurons in the arcuate nucleus (ARC) as important for seasonal changes in reproductive function in sheep, but earlier studies support a role for inhibitory A15 dopaminergic (DA) neurons in the suppression of GnRH (and LH) pulse frequency in the nonbreeding (anestrous) season. Because A15 neurons project to the ARC, we performed three experiments to test the hypothesis that A15 neurons act via ARC kisspeptin neurons to inhibit LH in anestrus: 1) we used dual immunocytochemistry to determine whether these ARC neurons contain D2 dopamine receptor (D2-R), the receptor responsible for inhibition of LH in anestrus; 2) we tested the ability of local administration of sulpiride, a D2-R antagonist, into the ARC to increase LH secretion in anestrus; and 3) we determined whether an antagonist to the kisspeptin receptor could block the increase in LH secretion induced by sulpiride in anestrus. In experiment 1, 40% of this ARC neuronal subpopulation contained D2-R in breeding season ewes, but this increased to approximately 80% in anestrus. In experiment 2, local microinjection of the two highest doses (10 and 50 nmol) of sulpiride into the ARC significantly increased LH pulse frequency to levels 3 times that seen with vehicle injections. Finally, intracerebroventricular infusion of a kisspeptin receptor antagonist completely blocked the increase in LH pulse frequency induced by systemic administration of sulpiride to anestrous ewes. These results support the hypothesis that DA acts to inhibit GnRH (and LH) secretion in anestrus by suppressing the activity of ARC kisspeptin neurons.


Endocrinology | 2011

Evidence that the Arcuate Nucleus Is an Important Site of Progesterone Negative Feedback in the Ewe

Robert L. Goodman; Ida Holaskova; Casey C Nestor; John M. Connors; Heather J. Billings; Miro Valent; Michael N. Lehman; Stanley M. Hileman

There is now considerable evidence that dynorphin neurons mediate the negative feedback actions of progesterone to inhibit GnRH and LH pulse frequency, but the specific neurons have yet to be identified. In ewes, dynorphin neurons in the arcuate nucleus (ARC) and preoptic area (POA) are likely candidates based on colocalization with progesterone receptors. These studies tested the hypothesis that progesterone negative feedback occurs in either the ARC or POA by determining whether microimplants of progesterone into either site would inhibit LH pulse frequency (study 1) and whether microimplants of the progesterone receptor antagonist, RU486, would disrupt the inhibitory effects of peripheral progesterone (study 2). Both studies were done in ovariectomized (OVX) and estradiol-treated OVX ewes. In study 1, no inhibitory effects of progesterone were observed during treatment in either area. In study 2, microimplants of RU486 into the ARC disrupted the negative-feedback actions of peripheral progesterone treatments on LH pulse frequency in both OVX and OVX+estradiol ewes. In contrast, microimplants of RU486 into the POA had no effect on the ability of systemic progesterone to inhibit LH pulse frequency. We thus conclude that the ARC is one important site of progesterone-negative feedback in the ewe. These data, which are the first evidence on the neural sites in which progesterone inhibits GnRH pulse frequency in any species, are consistent with the hypothesis that ARC dynorphin neurons mediate this action of progesterone.


Endocrinology | 2008

Evidence that γ-Aminobutyric Acid Is Part of the Neural Circuit Mediating Estradiol Negative Feedback in Anestrous Ewes

Adrienne L. Bogusz; Steven L. Hardy; Michael N. Lehman; John M. Connors; Stanley M. Hileman; Joanna H. Sliwowska; Heather J. Billings; Christina J. McManus; Miroslav Valent; Sushma R. Singh; Casey C Nestor; Lique M. Coolen; Robert L. Goodman

Seasonal anestrus in ewes is driven by an increase in response to estradiol (E2) negative feedback. Compelling evidence indicates that inhibitory A15 dopaminergic (DA) neurons mediate the increased inhibitory actions of E2 in anestrus, but these neurons do not contain estrogen receptors. Therefore, we have proposed that estrogen-responsive afferents to A15 neurons are part of the neural circuit mediating E2 negative feedback in anestrus. This study examined the possible role of afferents containing gamma-aminobutyric acid (GABA) and nitric oxide (NO) in modulating the activity of A15 neurons. Local administration of NO synthase inhibitors to the A15 had no effect on LH, but GABA receptor ligands produced dramatic changes. Administration of either a GABA A or GABA B receptor agonist to the A15 increased LH secretion in ovary-intact ewes, suggesting that GABA inhibits A15 neural activity. In ovariectomized anestrous ewes, the same doses of GABA receptor agonist had no effect, but combined administration of a GABA A and GABA B receptor antagonist to the A15 inhibited LH secretion. These data are consistent with the hypothesis that endogenous GABA release within the A15 is low in ovary-intact anestrous ewes and elevated after ovariectomy. Using dual immunocytochemistry, we observed that GABAergic varicosities make close contacts on to A15 neurons and that A15 neurons contain both the GABA A-alpha1 and the GABA B-R1 receptor subunits. Based on these data, we propose that in anestrous ewes, E2 inhibits release of GABA from afferents to A15 DA neurons, increasing the activity of these DA neurons and thus suppressing episodic secretion of GnRH and LH.


Journal of Neuroendocrinology | 2014

Neurokinin-3 receptor activation in the retrochiasmatic area is essential for the full pre-ovulatory luteinising hormone surge in ewes.

Katrina L. Porter; Stanley M. Hileman; Steven L. Hardy; Casey C Nestor; Michael N. Lehman; Robert L. Goodman

Neurokinin B (NKB) is essential for human reproduction and has been shown to stimulate luteinising hormone (LH) secretion in several species, including sheep. Ewes express the neurokinin‐3 receptor (NK3R) in the retrochiasmatic area (RCh) and there is one report that placement of senktide, an NK3R agonist, therein stimulates LH secretion that resembles an LH surge in ewes. In the present study, we first confirmed that local administration of senktide to the RCh produced a surge‐like increase in LH secretion, and then tested the effects of this agonist in two other areas implicated in the control of LH secretion and where NK3R is found in high abundance: the preoptic area (POA) and arcuate nucleus (ARC). Bilateral microimplants containing senktide induced a dramatic surge‐like increase in LH when given in the POA similar to that seen with RCh treatment. By contrast, senktide treatment in the ARC resulted in a much smaller but significant increase in LH concentrations suggestive of an effect on tonic secretion. The possible role of POA and RCh NK3R activation in the LH surge was next tested by treating ewes with SB222200, an NK3R antagonist, in each area during an oestradiol‐induced LH surge. SB222200 in the RCh, but not in the POA, reduced the LH surge amplitude by approximately 40% compared to controls, indicating that NK3R activation in the former region is essential for full expression of the pre‐ovulatory LH surge. Based on these data, we propose that the actions of NKB in the RCh are an important component of the pre‐ovulatory LH surge in ewes.


Endocrinology | 2013

Evidence that Orphanin FQ Mediates Progesterone Negative Feedback in the Ewe

Casey C Nestor; Lique M. Coolen; Gail L. Nesselrod; Miro Valent; John M. Connors; Stanley M. Hileman; Guanliang Cheng; Michael N. Lehman; Robert L. Goodman

Orphanin FQ (OFQ), a member of the opioid family, is found in many areas of the hypothalamus and, when given centrally OFQ inhibits episodic LH secretion in rodents and sheep. Because GnRH neurons are devoid of the appropriate receptors to mediate steroid negative feedback directly, neurons that release OFQ may be involved. Using immunocytochemistry, we first determined that most OFQ neurons in the arcuate nucleus (ARC) and other hypothalamic regions of luteal phase ewes contained both estrogen receptor α and progesterone (P) receptor. Given a similar high degree of steroid receptor colocalization in other ARC subpopulations, we examined whether OFQ neurons of the ARC contained those other neuropeptides and neurotransmitters. OFQ did not colocalize with kisspeptin, tyrosine hydroxylase, or agouti-related peptide, but all ARC OFQ neurons coexpressed proopiomelanocortin. To test for a role for endogenous OFQ, we examined the effects of an OFQ receptor antagonist, [Nphe1,Arg14,Lys15]Nociceptin-NH2 (UFP-101) (30 nmol intracerebroventricular/h), on LH secretion in steroid-treated ewes in the breeding season and ovary-intact ewes in anestrus. Ovariectomized ewes with luteal phase concentrations of P and estradiol showed a significant increase in LH pulse frequency during infusion of UFP-101 (4.5 ± 0.5 pulses/6 h) compared with saline infusion (2.6 ± 0.4 pulses/6 h), whereas ewes implanted with only estradiol did not. Ovary-intact anestrous ewes displayed no significant differences in LH pulse amplitude or frequency during infusion of UFP-101. Therefore, we conclude that OFQ mediates, at least in part, the negative feedback action of P on GnRH/LH pulse frequency in sheep.


American Journal of Physiology-cell Physiology | 2010

Inactivation of L-type calcium channel modulated by HCN2 channel

Yen-Chang Lin; Jianying Huang; Qi Zhang; John M. Hollander; Jefferson C. Frisbee; Karen H. Martin; Casey C Nestor; Robert L. Goodman; Han-Gang Yu

Ca(2+) entry is delicately controlled by inactivation of L-type calcium channel (LTCC) composed of the pore-forming subunit alpha1C and the auxiliary subunits beta1 and alpha2delta. Calmodulin is the key protein that interacts with the COOH-terminal motifs of alpha1C, leading to the fine control of LTCC inactivation. In this study we show evidence that a hyperpolarization-activated cyclic nucleotide-gated channel, HCN2, can act as a nonchannel regulatory protein to narrow the L-type Ca(2+) channel current-voltage curve. In the absence of LTCC auxiliary subunits, HCN2 can induce alpha1C inactivation. Without alpha2delta, HCN2-induced fast inactivation of alpha1C requires calmodulin. With alpha2delta, the alpha1C/HCN2/alpha2delta channel inactivation does not require calmodulin. In contrast, beta1-subunit plays a relatively minor role in the interaction of alpha1C with HCN2. The NH(2) terminus of HCN2 and the IQ motif of alpha1C subunit are required for alpha1C/HCN2 channel interaction. Ca(2+) channel inactivation is significantly slowed in hippocampus neurons (HNs) overexpressing HCN2 mutant lacking NH(2) terminus and accelerated in HNs overexpressing the wild-type HCN2 compared with HN controls. Collectively, these results revealed a potentially novel protection mechanism for achieving the LTCC inactivation via interaction with HCN2.


Biology of Reproduction | 2011

Evidence That Orphanin FQ Is Important for Progesterone Negative Feedback in Ewes.

Casey C Nestor; Gail L. Nesselrod; Miroslav Valent; John M. Connors; Stanley M. Hileman; Robert L. Goodman

Collaboration


Dive into the Casey C Nestor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael N. Lehman

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Michael N. Lehman

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Lique M. Coolen

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Miro Valent

West Virginia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge