Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stanley M. Hileman is active.

Publication


Featured researches published by Stanley M. Hileman.


Journal of Clinical Investigation | 2000

Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity

Karim El-Haschimi; Dominique D. Pierroz; Stanley M. Hileman; Christian Bjørbæk; Jeffrey S. Flier

Obesity in humans and in rodents is usually associated with high circulating leptin levels and leptin resistance. To examine the molecular basis for leptin resistance, we determined the ability of leptin to induce hypothalamic STAT3 (signal transducer and activator of transcription) signaling in C57BL/6J mice fed either low-fat or high-fat diets. In mice fed the low-fat diet, leptin activated STAT3 signaling when administered via the intraperitoneal (ip) or the intracerebroventricular (icv) route, with the half-maximal dose being 30-fold less when given by the icv route. The high-fat diet increased body-weight gain and plasma leptin levels. After 4 weeks on the diet, hypothalamic STAT3 signaling after ip leptin administration was equivalent in both diet groups. In contrast, peripherally administered leptin was completely unable to activate hypothalamic STAT3 signaling, as measured by gel shift assay after 15 weeks of high-fat diet. Despite the absence of detectable signaling after peripheral leptin at 15 weeks, the mice fed the high-fat diet retained the capacity to respond to icv leptin, although the magnitude of STAT3 activation was substantially reduced. These results suggest that leptin resistance induced by a high-fat diet evolves during the course of the diet and has at least two independent causes: an apparent defect in access to sites of action in the hypothalamus that markedly limits the ability of peripheral leptin to activate hypothalamic STAT signaling, and an intracellular signaling defect in leptin-responsive hypothalamic neurons that lies upstream of STAT3 activation.


Nature Medicine | 2004

Adiponectin acts in the brain to decrease body weight.

Yong Qi; Nobuhiko Takahashi; Stanley M. Hileman; Hiralben R. Patel; Anders H. Berg; Utpal B. Pajvani; Philipp E. Scherer; Rexford S. Ahima

Adiponectin (ADP) is an adipocyte hormone involved in glucose and lipid metabolism. We detected a rise in ADP in cerebrospinal fluid after intravenous (i.v.) injection, consistent with brain transport. In contrast to leptin, intracerebroventricular (i.c.v.) administration of ADP decreased body weight mainly by stimulating energy expenditure. Full-length ADP, mutant ADP with Cys39 replaced with serine, and globular ADP were effective, whereas the collagenous tail fragment was not. Lep ob/ob mice were especially sensitive to i.c.v. and systemic ADP, which resulted in increased thermogenesis, weight loss and reduction in serum glucose and lipid levels. ADP also potentiated the effect of leptin on thermogenesis and lipid levels. While both hormones increased expression of hypothalamic corticotropin-releasing hormone (CRH), ADP had no substantial effect on other neuropeptide targets of leptin. In addition, ADP induced distinct Fos immunoreactivity. Agouti (A y/a) mice did not respond to ADP or leptin, indicating the melanocortin pathway may be a common target. These results show that ADP has unique central effects on energy homeostasis.


Diabetes | 2006

Adiponectin Does Not Cross the Blood-Brain Barrier but Modifies Cytokine Expression of Brain Endothelial Cells

Joachim Spranger; Sulekha Verma; Isabel Göhring; Thomas Bobbert; Joseph Seifert; Amy L. Sindler; Andreas F.H. Pfeiffer; Stanley M. Hileman; Matthias H. Tschöp; William A. Banks

Adiponectin has recently been reported to generate a negative energy balance by increasing energy expenditure. However, it is unclear whether such effects require the presence and direct action of the adiponectin protein in the central nervous system. In this study, neither radiolabeled nonglycosylated nor glycosylated globular adiponectin crossed the blood-brain barrier (BBB) in mice. In addition, adiponectin was not detectable in human cerebrospinal fluid using various established methods. Using murine cerebral microvessels, we demonstrated expression of adiponectin receptors, which are upregulated during fasting, in brain endothelium. Interestingly, treatment with adiponectin reduced secretion of the centrally active interleukin-6 from brain endothelial cells, a phenomenon that was paralleled by a similar trend of other proinflammatory cytokines. In summary, our data suggest that direct effects of endogenous adiponectin on central nervous system pathways are unlikely to exist. However, the identification of adiponectin receptors on brain endothelial cells and the finding of a modified secretion pattern of centrally active substances from BBB cells provides an alternate explanation as to how adiponectin may evoke effects on energy metabolism.


Endocrinology | 2010

Neurokinin B Acts via the Neurokinin-3 Receptor in the Retrochiasmatic Area to Stimulate Luteinizing Hormone Secretion in Sheep

Heather J. Billings; John M. Connors; Stephanie Altman; Stanley M. Hileman; Ida Holaskova; Michael N. Lehman; Christina J. McManus; Casey C Nestor; Britni H. Jacobs; Robert L. Goodman

Recent data have demonstrated that mutations in the receptor for neurokinin B (NKB), the NK-3 receptor (NK3R), produce hypogonadotropic hypogonadism in humans. These data, together with reports that NKB expression increases after ovariectomy and in postmenopausal women, have led to the hypothesis that this tachykinin is an important stimulator of GnRH secretion. However, the NK3R agonist, senktide, inhibited LH secretion in rats and mice. In this study, we report that senktide stimulates LH secretion in ewes. A dramatic increase in LH concentrations to levels close to those observed during the preovulatory LH surge was observed after injection of 1 nmol senktide into the third ventricle during the follicular, but not in the luteal, phase. Similar increases in LH secretion occurred after insertion of microimplants containing this agonist into the retrochiasmatic area (RCh) in anestrous or follicular phase ewes. A low-dose microinjection (3 pmol) of senktide into the RCh produced a smaller but significant increase in LH concentrations in anestrous ewes. Moreover, NK3R immunoreactivity was clearly evident in the RCh, although it was not found in A15 dopaminergic cell bodies in this region. These data provide evidence that NKB stimulates LH (and presumably GnRH) secretion in ewes and point to the RCh as one important site of action. Based on these data, and the effects of NK3R mutations in humans, we hypothesize that NKB plays an important stimulatory role in the control of GnRH and LH secretion in nonrodent species.


Endocrinology | 2013

Kisspeptin, Neurokinin B, and Dynorphin Act in the Arcuate Nucleus to Control Activity of the GnRH Pulse Generator in Ewes

Robert L. Goodman; Stanley M. Hileman; Casey C Nestor; Katrina L. Porter; John M. Connors; Steve L. Hardy; Robert P. Millar; Maria Cernea; Lique M. Coolen; Michael N. Lehman

Recent work has led to the hypothesis that kisspeptin/neurokinin B/dynorphin (KNDy) neurons in the arcuate nucleus play a key role in GnRH pulse generation, with kisspeptin driving GnRH release and neurokinin B (NKB) and dynorphin acting as start and stop signals, respectively. In this study, we tested this hypothesis by determining the actions, if any, of four neurotransmitters found in KNDy neurons (kisspeptin, NKB, dynorphin, and glutamate) on episodic LH secretion using local administration of agonists and antagonists to receptors for these transmitters in ovariectomized ewes. We also obtained evidence that GnRH-containing afferents contact KNDy neurons, so we tested the role of two components of these afferents: GnRH and orphanin-FQ. Microimplants of a Kiss1r antagonist briefly inhibited LH pulses and microinjections of 2 nmol of this antagonist produced a modest transitory decrease in LH pulse frequency. An antagonist to the NKB receptor also decreased LH pulse frequency, whereas NKB and an antagonist to the receptor for dynorphin both increased pulse frequency. In contrast, antagonists to GnRH receptors, orphanin-FQ receptors, and the N-methyl-D-aspartate glutamate receptor had no effect on episodic LH secretion. We thus conclude that the KNDy neuropeptides act in the arcuate nucleus to control episodic GnRH secretion in the ewe, but afferent input from GnRH neurons to this area does not. These data support the proposed roles for NKB and dynorphin within the KNDy neural network and raise the possibility that kisspeptin contributes to the control of GnRH pulse frequency in addition to its established role as an output signal from KNDy neurons that drives GnRH pulses.


Endocrinology | 2012

KNDy (Kisspeptin/Neurokinin B/Dynorphin) Neurons Are Activated during Both Pulsatile and Surge Secretion of LH in the Ewe

Christina M. Merkley; Katrina L. Porter; Lique M. Coolen; Stanley M. Hileman; Heather J. Billings; Sara Drews; Robert L. Goodman; Michael N. Lehman

KNDy (kisspeptin/neurokinin B/dynorphin) neurons of the arcuate nucleus (ARC) appear to mediate the negative feedback actions of estradiol and are thought to be key regulators of pulsatile LH secretion. In the ewe, KNDy neurons may also be involved with the positive feedback actions of estradiol (E(2)) to induce the LH surge, but the role of kisspeptin neurons in the preoptic area (POA) remains unclear. The goal of this study was to identify which population(s) of kisspeptin neurons is (are) activated during the LH surge and in response to the removal of E(2)-negative feedback, using Fos as an index of neuronal activation. Dual-label immunocytochemistry for kisspeptin and Fos was performed on sections containing the ARC and POA from ewes during the luteal phase of the estrous cycle, or before or after the onset of the LH surge (experiment 1), and from ovary-intact, short-term (24 h) and long-term (>30 d) ovariectomized (OVX) ewes in anestrus (experiment 2). The percentage of kisspeptin neurons expressing Fos in both the ARC and POA was significantly higher during the LH surge. In contrast, the percentage of kisspeptin/Fos colocalization was significantly increased in the ARC, but not POA, after both short- and long-term E(2) withdrawal. Thus, POA kisspeptin neurons in the sheep are activated during, and appear to contribute to, E(2)-positive feedback, whereas ARC kisspeptin (KNDy) neurons are activated during both surge and pulsatile modes of secretion and likely play a role in mediating both positive and negative feedback actions of E(2) on GnRH secretion in the ewe.


Diabetes | 2006

Neuropeptide Y Deficiency Attenuates Responses to Fasting and High-Fat Diet in Obesity-Prone Mice

Hiralben R. Patel; Yong Qi; Evan J. Hawkins; Stanley M. Hileman; Joel K. Elmquist; Yumi Imai; Rexford S. Ahima

Neuropeptide Y (NPY) stimulates feeding and weight gain, but deletion of the NPY gene does not affect food intake and body weight in mice bred on a mixed genetic background. We reasoned that the orexigenic action of NPY would be evident in C57Bl/6J mice susceptible to obesity. NPY deficiency has no significant effect in mice fed a normal rodent diet. However, energy expenditure is elevated during fasting, and hyperphagia and weight gain are blunted during refeeding. Expression of agouti-related peptide (AGRP) in the hypothalamus is increased in NPY knockout (NPYko) than wild-type mice, but unlike wild type there is no further increase in AGRP when NPYko mice are fasted. Moreover, NPYko mice have higher oxygen consumption and uncoupling protein-1 expression in brown adipose tissue during fasting. The failure of an increase in orexigenic peptides and higher thermogenesis may contribute to attenuation of weight gain when NPYko mice are refed. C57Bl/6J mice lacking NPY are also less susceptible to diet-induced obesity (DIO) as a result of reduced feeding and increased energy expenditure. The resistance to DIO in NPYko mice is associated with a reduction in nocturnal feeding and increased expression of anorexigenic hypothalamic peptides. Insulin, leptin, and triglyceride levels increase with adiposity in both wild-type and NPYko mice.


Advances in Experimental Medicine and Biology | 2013

Neuroanatomy of the Kisspeptin Signaling System in Mammals: Comparative and Developmental Aspects

Michael N. Lehman; Stanley M. Hileman; Robert L. Goodman

Our understanding of kisspeptin and its actions depends, in part, on a detailed knowledge of the neuroanatomy of the kisspeptin signaling system in the brain. In this chapter, we will review our current knowledge of the distribution of kisspeptin cells, fibers, and receptors in the mammalian brain, including the development, phenotype, and projections of different kisspeptin subpopulations. A fairly consistent picture emerges from this analysis. There are two major groups of kisspeptin cell bodies: a large number in the arcuate nucleus (ARC) and a smaller collection in the rostral periventricular area of the third ventricle (RP3V) of rodents and preoptic area (POA) of non-rodents. Both sets of neurons project to GnRH cell bodies, which contain Kiss1r, and the ARC kisspeptin population also projects to GnRH axons in the median eminence. ARC kisspeptin neurons contain neurokinin B and dynorphin, while a variable percentage of those cells in the RP3V of rodents contain galanin and/or dopamine. Neurokinin B and dynorphin have been postulated to contribute to the control of GnRH pulses and sex steroid negative feedback, while the role of galanin and dopamine in rostral kisspeptin neurons is not entirely clear. Kisspeptin neurons, fibers, and Kiss1r are found in other areas, including widespread areas outside the hypothalamus, but their physiological role(s) in these regions remains to be determined.


Endocrinology | 2012

Evidence of a Role for Kisspeptin and Neurokinin B in Puberty of Female Sheep

Casey C Nestor; Amanda M.S. Briscoe; Shay M. Davis; Miro Valent; Robert L. Goodman; Stanley M. Hileman

Puberty onset in female sheep is marked by a decrease in estradiol-negative feedback, allowing for the increase in GnRH and LH pulses that heralds the first ovulation. Based on recent genetic studies in humans, two possible neuropeptides that could promote puberty onset are kisspeptin and neurokinin B (NKB). Our first experiment determined whether the NKB agonist, senktide, could stimulate LH secretion in prepubertal ewes. A second study used prepubertal and postpubertal ewes that were intact or ovariectomized (OVX) to test the hypothesis that expression of kisspeptin and NKB in the arcuate nucleus increased postpubertally. For comparison, kisspeptin and NKB expression in age-matched intact, and castrated males were also examined. In experiment 1, the percentage of ewes showing an LH pulse immediately after injection of senktide (100 μg, 60%; 500 μg, 100%) was greater than that for water-injected controls (experiment 1a, 25%; experiment 1b, 20%). In experiment 2, kisspeptin-positive cell numbers in the arcuate nucleus increased after puberty in intact females and were increased by OVX in prepubertal but not postpubertal ewes. Changes in kisspeptin cell numbers were paralleled by changes in kisspeptin-close contacts onto GnRH neurons in the medial preoptic area. NKB cell numbers did not differ significantly between intact prepubertal and postpubertal ewes but increased with OVX in both age groups. NKB fiber immunoreactivity was greater in postpubertal than in prepubertal intact ewes. In age-matched males, kisspeptin and NKB cell numbers increased with castration, but decreased with age. These results support the hypothesis that kisspeptin is a gatekeeper to female ovine puberty and raise the possibility that NKB may also play a role, albeit through different means.


Endocrinology | 2012

Evidence That Dopamine Acts via Kisspeptin to Hold GnRH Pulse Frequency in Check in Anestrous Ewes

Robert L. Goodman; Matthew Maltby; Robert P. Millar; Stanley M. Hileman; Casey C Nestor; Brant Whited; Ashlie S. Tseng; Lique M. Coolen; Michael N. Lehman

Recent work has implicated stimulatory kisspeptin neurons in the arcuate nucleus (ARC) as important for seasonal changes in reproductive function in sheep, but earlier studies support a role for inhibitory A15 dopaminergic (DA) neurons in the suppression of GnRH (and LH) pulse frequency in the nonbreeding (anestrous) season. Because A15 neurons project to the ARC, we performed three experiments to test the hypothesis that A15 neurons act via ARC kisspeptin neurons to inhibit LH in anestrus: 1) we used dual immunocytochemistry to determine whether these ARC neurons contain D2 dopamine receptor (D2-R), the receptor responsible for inhibition of LH in anestrus; 2) we tested the ability of local administration of sulpiride, a D2-R antagonist, into the ARC to increase LH secretion in anestrus; and 3) we determined whether an antagonist to the kisspeptin receptor could block the increase in LH secretion induced by sulpiride in anestrus. In experiment 1, 40% of this ARC neuronal subpopulation contained D2-R in breeding season ewes, but this increased to approximately 80% in anestrus. In experiment 2, local microinjection of the two highest doses (10 and 50 nmol) of sulpiride into the ARC significantly increased LH pulse frequency to levels 3 times that seen with vehicle injections. Finally, intracerebroventricular infusion of a kisspeptin receptor antagonist completely blocked the increase in LH pulse frequency induced by systemic administration of sulpiride to anestrous ewes. These results support the hypothesis that DA acts to inhibit GnRH (and LH) secretion in anestrus by suppressing the activity of ARC kisspeptin neurons.

Collaboration


Dive into the Stanley M. Hileman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Casey C Nestor

West Virginia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael N. Lehman

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Michael N. Lehman

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Lique M. Coolen

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiralben R. Patel

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge