Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Casey E. Romanoski is active.

Publication


Featured researches published by Casey E. Romanoski.


Nature Reviews Molecular Cell Biology | 2015

The selection and function of cell type-specific enhancers

Sven Heinz; Casey E. Romanoski; Christopher Benner; Christopher K. Glass

The human body contains several hundred cell types, all of which share the same genome. In metazoans, much of the regulatory code that drives cell type-specific gene expression is located in distal elements called enhancers. Although mammalian genomes contain millions of potential enhancers, only a small subset of them is active in a given cell type. Cell type-specific enhancer selection involves the binding of lineage-determining transcription factors that prime enhancers. Signal-dependent transcription factors bind to primed enhancers, which enables these broadly expressed factors to regulate gene expression in a cell type-specific manner. The expression of genes that specify cell type identity and function is associated with densely spaced clusters of active enhancers known as super-enhancers. The functions of enhancers and super-enhancers are influenced by, and affect, higher-order genomic organization.


Nature | 2013

Effect of natural genetic variation on enhancer selection and function

Sven Heinz; Casey E. Romanoski; Christopher Benner; Karmel A. Allison; Minna U. Kaikkonen; L. D. Orozco; Christopher K. Glass

The mechanisms by which genetic variation affects transcription regulation and phenotypes at the nucleotide level are incompletely understood. Here we use natural genetic variation as an in vivo mutagenesis screen to assess the genome-wide effects of sequence variation on lineage-determining and signal-specific transcription factor binding, epigenomics and transcriptional outcomes in primary macrophages from different mouse strains. We find substantial genetic evidence to support the concept that lineage-determining transcription factors define epigenetic and transcriptomic states by selecting enhancer-like regions in the genome in a collaborative fashion and facilitating binding of signal-dependent factors. This hierarchical model of transcription factor function suggests that limited sets of genomic data for lineage-determining transcription factors and informative histone modifications can be used for the prioritization of disease-associated regulatory variants.


Nature | 2015

Epigenomics: Roadmap for regulation

Casey E. Romanoski; Christopher K. Glass; Hendrik G. Stunnenberg; Laurence Wilson; Geneviève Almouzni

A package of papers investigates the functional regulatory elements in genomes that have been obtained from human tissue samples and cell lines. The implications of the project are presented here from three viewpoints. See Articles p.317, p.331, p.337 & p.344 and Letters p.350, p.355, p.360 & p.365


Circulation Research | 2012

Role of Phospholipid Oxidation Products in Atherosclerosis

Sangderk Lee; Konstantin G. Birukov; Casey E. Romanoski; James R. Springstead; Aldons J. Lusis; Judith A. Berliner

There is increasing clinical evidence that phospholipid oxidation products (Ox-PL) play a role in atherosclerosis. This review focuses on the mechanisms by which Ox-PL interact with endothelial cells, monocyte/macrophages, platelets, smooth muscle cells, and HDL to promote atherogenesis. In the past few years major progress has been made in identifying these mechanisms. It has been recognized that Ox-PL promote phenotypic changes in these cell types that have long-term consequences for the vessel wall. Individual Ox-PL responsible for specific cellular effects have been identified. A model of the configuration of bioactive truncated Ox-PL within membranes has been developed that demonstrates that the oxidized fatty acid moiety protrudes into the aqueous phase, rendering it accessible for receptor recognition. Receptors and signaling pathways for individual Ox-PL species are now determined and receptor independent signaling pathways identified. The effects of Ox-PL are mediated both by gene regulation and transcription independent processes. It has now become apparent that Ox-PL affects multiple genes and pathways, some of which are proatherogenic and some are protective. However, at concentrations that are likely present in the vessel wall in atherosclerotic lesions, the effects promote atherogenesis. There have also been new insights on enzymes that metabolize Ox-PL and the significance of these enzymes for atherosclerosis. With the knowledge we now have of the regulation and effects of Ox-PL in different vascular cell types, it should be possible to design experiments to test the role of specific Ox-PL on the development of atherosclerosis.


American Journal of Human Genetics | 2010

Systems Genetics Analysis of Gene-by-Environment Interactions in Human Cells

Casey E. Romanoski; Sangderk Lee; Michelle J. Kim; Leslie Ingram-Drake; Christopher L. Plaisier; Roumyana Yordanova; Charles Tilford; Bo Guan; Aiqing He; Peter S. Gargalovic; Todd G. Kirchgessner; Judith A. Berliner; Aldons J. Lusis

Gene by environment (GxE) interactions are clearly important in many human diseases, but they have proven to be difficult to study on a molecular level. We report genetic analysis of thousands of transcript abundance traits in human primary endothelial cell (EC) lines in response to proinflammatory oxidized phospholipids implicated in cardiovascular disease. Of the 59 most regulated transcripts, approximately one-third showed evidence of GxE interactions. The interactions resulted primarily from effects of distal-, trans-acting loci, but a striking example of a local-GxE interaction was also observed for FGD6. Some of the distal interactions were validated by siRNA knockdown experiments, including a locus involved in the regulation of multiple transcripts involved in the ER stress pathway. Our findings add to the understanding of the overall architecture of complex human traits and are consistent with the possibility that GxE interactions are responsible, in part, for the failure of association studies to more fully explain common disease variation.


Circulation Research | 2011

Network for Activation of Human Endothelial Cells by Oxidized Phospholipids: A Critical Role of Heme Oxygenase 1

Casey E. Romanoski; Nam Che; Fen Yin; Nguyen Mai; Delila Pouldar; Mete Civelek; Calvin Pan; Sangderk Lee; Ladan Vakili; Wen-Pin Yang; Paul S. Kayne; Imran N. Mungrue; Jesus A. Araujo; Judith A. Berliner; Aldons J. Lusis

Rationale: Oxidized palmitoyl arachidonyl phosphatidylcholine (Ox-PAPC) accumulates in atherosclerotic lesions, is proatherogenic, and influences the expression of more than 1000 genes in endothelial cells. Objective: To elucidate the major pathways involved in Ox-PAPC action, we conducted a systems analysis of endothelial cell gene expression after exposure to Ox-PAPC. Methods and Results: We used the variable responses of primary endothelial cells from 149 individuals exposed to Ox-PAPC to construct a network that consisted of 11 groups of genes, or modules. Modules were enriched for a broad range of Gene Ontology pathways, some of which have not been identified previously as major Ox-PAPC targets. Further validating our method of network construction, modules were consistent with relationships established by cell biology studies of Ox-PAPC effects on endothelial cells. This network provides novel hypotheses about molecular interactions, as well as candidate molecular regulators of inflammation and atherosclerosis. We validated several hypotheses based on network connections and genomic association. Our network analysis predicted that the hub gene CHAC1 (cation transport regulator homolog 1) was regulated by the ATF4 (activating transcription factor 4) arm of the unfolded protein response pathway, and here we showed that ATF4 directly activates an element in the CHAC1 promoter. We showed that variation in basal levels of heme oxygenase 1 (HMOX1) contribute to the response to Ox-PAPC, consistent with its position as a hub in our network. We also identified G-protein–coupled receptor 39 (GPR39) as a regulator of HMOX1 levels and showed that it modulates the promoter activity of HMOX1. We further showed that OKL38/OSGN1 (oxidative stress–induced growth inhibitor), the hub gene in the blue module, is a key regulator of both inflammatory and antiinflammatory molecules. Conclusions: Our systems genetics approach has provided a broad view of the pathways involved in the response of endothelial cells to Ox-PAPC and also identified novel regulatory mechanisms.


Journal of Lipid Research | 2013

Identification of CAD candidate genes in GWAS loci and their expression in vascular cells

Ayca Erbilgin; Mete Civelek; Casey E. Romanoski; Calvin Pan; Raffi Hagopian; Judith A. Berliner; Aldons J. Lusis

Recent genome-wide association studies (GWAS) have identified 35 loci that significantly associate with coronary artery disease (CAD) susceptibility. The majority of the genes represented in these loci have not previously been studied in the context of atherosclerosis. To characterize the roles of these candidate genes in the vessel wall, we determined their expression levels in endothelial, smooth muscle, and macrophage cells isolated from healthy, prelesioned, and lesioned mouse aortas. We also performed expression quantitative locus (eQTL) mapping of these genes in human endothelial cells under control and proatherogenic conditions. Of the 57 genes studied, 31 were differentially expressed in one or more cell types in disease state in mice, and the expression levels of 8 were significantly associated with the CAD SNPs in human cells, 7 of which were also differentially expressed in mice. By integrating human and mouse results, we predict that PPAP2B, GALNT4, MAPKAPK5, TCTN1, SRR, SNF8, and ICAM1 play a causal role in the susceptibility to atherosclerosis through a role in the vasculature. Additionally, we highlight the genetic complexity of a subset of CAD loci through the differential expression of multiple candidate genes per locus and the involvement of genes that lie outside linkage disequilibrium blocks.


Cell Metabolism | 2015

MAFG Is a Transcriptional Repressor of Bile Acid Synthesis and Metabolism

Thomas Q. de Aguiar Vallim; Elizabeth J. Tarling; Hannah Ahn; Lee R. Hagey; Casey E. Romanoski; Richard G. Lee; Mark J. Graham; Hozumi Motohashi; Masayuki Yamamoto; Peter A. Edwards

Specific bile acids are potent signaling molecules that modulate metabolic pathways affecting lipid, glucose and bile acid homeostasis, and the microbiota. Bile acids are synthesized from cholesterol in the liver, and the key enzymes involved in bile acid synthesis (Cyp7a1, Cyp8b1) are regulated transcriptionally by the nuclear receptor FXR. We have identified an FXR-regulated pathway upstream of a transcriptional repressor that controls multiple bile acid metabolism genes. We identify MafG as an FXR target gene and show that hepatic MAFG overexpression represses genes of the bile acid synthetic pathway and modifies the biliary bile acid composition. In contrast, loss-of-function studies using MafG(+/-) mice causes de-repression of the same genes with concordant changes in biliary bile acid levels. Finally, we identify functional MafG response elements in bile acid metabolism genes using ChIP-seq analysis. Our studies identify a molecular mechanism for the complex feedback regulation of bile acid synthesis controlled by FXR.


Journal of Biological Chemistry | 2013

25-Hydroxycholesterol Activates the Integrated Stress Response to Reprogram Transcription and Translation in Macrophages

Norihito Shibata; Aaron F. Carlin; Nathanael J. Spann; Kaoru Saijo; Christopher S. Morello; Jeffrey G. McDonald; Casey E. Romanoski; Mano Ram Maurya; Minna U. Kaikkonen; Michael T. Lam; Andrea Crotti; Donna Reichart; Jesse N. Fox; Oswald Quehenberger; Christian R. H. Raetz; M. Cameron Sullards; Robert C. Murphy; Alfred H. Merrill; H. Alex Brown; Edward A. Dennis; Eoin Fahy; Shankar Subramaniam; Douglas R. Cavener; Deborah H. Spector; David W. Russell; Christopher K. Glass

Background: Interferons and viral infections stimulate the production of 25-hydroxycholesterol. Results: 25-Hydroxycholesterol significantly alters cholesterol ester and sphingolipid levels and activates the integrated stress response. Conclusion: 25-Hydroxycholesterol activates the GCN2/eIF2α/ATF4 integrated stress response likely by causing cysteine depletion and/or by generating oxidative stress. Significance: Altering important membrane lipids and activating the integrated stress response may contribute to the antiviral activity of 25-hydroxycholesterol. 25-Hydroxycholesterol (25OHC) is an enzymatically derived oxidation product of cholesterol that modulates lipid metabolism and immunity. 25OHC is synthesized in response to interferons and exerts broad antiviral activity by as yet poorly characterized mechanisms. To gain further insights into the basis for antiviral activity, we evaluated time-dependent responses of the macrophage lipidome and transcriptome to 25OHC treatment. In addition to altering specific aspects of cholesterol and sphingolipid metabolism, we found that 25OHC activates integrated stress response (ISR) genes and reprograms protein translation. Effects of 25OHC on ISR gene expression were independent of liver X receptors and sterol-response element-binding proteins and instead primarily resulted from activation of the GCN2/eIF2α/ATF4 branch of the ISR pathway. These studies reveal that 25OHC activates the integrated stress response, which may contribute to its antiviral activity.


PLOS ONE | 2013

Association of TERC and OBFC1 haplotypes with mean leukocyte telomere length and risk for coronary heart disease.

Cecilia Maubaret; Klelia D. Salpea; Casey E. Romanoski; Lasse Folkersen; Jackie A. Cooper; Coralea Stephanou; Ka Wah Li; Jutta Palmen; Anders Hamsten; Andrew Neil; Jeffrey W. Stephens; Aldons J. Lusis; Per Eriksson; Philippa J. Talmud; Steve E. Humphries

Objective To replicate the associations of leukocyte telomere length (LTL) with variants at four loci and to investigate their associations with coronary heart disease (CHD) and type II diabetes (T2D), in order to examine possible causal effects of telomere maintenance machinery on disease aetiology. Methods Four SNPs at three loci BICD1 (rs2630578 GγC), 18q12.2 (rs2162440 GγT), and OBFC1 (rs10786775 CγG, rs11591710 AγC) were genotyped in four studies comprised of 2353 subjects out of which 1148 had CHD and 566 T2D. Three SNPs (rs12696304 CγG, rs10936601G>T and rs16847897 GγC) at the TERC locus were genotyped in these four studies, in addition to an offspring study of 765 healthy students. For all samples, LTL had been measured using a real-time PCR-based method. Results Only one SNP was associated with a significant effect on LTL, with the minor allele G of OBFC1 rs10786775 SNP being associated with longer LTL (β=0.029, P=0.04). No SNPs were significantly associated with CHD or T2D. For OBFC1 the haplotype carrying both rare alleles (rs10786775G and rs11591710C, haplotype frequency 0.089) was associated with lower CHD prevalence (OR: 0.77; 95% CI: 0.61–0.97; P= 0.03). The TERC haplotype GTC (rs12696304G, rs10936601T and rs16847897C, haplotype frequency 0.210) was associated with lower risk for both CHD (OR: 0.86; 95% CI: 0.75-0.99; P=0.04) and T2D (OR: 0.74; 95% CI: 0.61–0.91; P= 0.004), with no effect on LTL. Only the last association remained after adjusting for multiple testing. Conclusion Of reported associations, only that between the OBFC1 rs10786775 SNP and LTL was confirmed, although our study has a limited power to detect modest effects. A 2-SNP OBFC1 haplotype was associated with higher risk of CHD, and a 3-SNP TERC haplotype was associated with both higher risk of CHD and T2D. Further work is required to confirm these results and explore the mechanisms of these effects.

Collaboration


Dive into the Casey E. Romanoski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sangderk Lee

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Calvin Pan

University of California

View shared research outputs
Top Co-Authors

Avatar

Sven Heinz

University of California

View shared research outputs
Top Co-Authors

Avatar

Verena M. Link

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Delila Pouldar

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge