Cassandra R. Zylstra
Van Andel Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cassandra R. Zylstra.
Journal of Biological Chemistry | 2005
Sheri L. Holmen; Cassandra R. Zylstra; Aditi Mukherjee; Robert E. Sigler; Marie Claude Faugere; Mary L. Bouxsein; Lianfu Deng; Thomas L. Clemens; Bart O. Williams
Mutations in the Wnt co-receptor LRP5 alter bone mass in humans, but the mechanisms responsible for Wnts actions in bone are unclear. To investigate the role of the classical Wnt signaling pathway in osteogenesis, we generated mice lacking the β-catenin or adenomatous polyposis coli (Apc) genes in osteoblasts. Loss of β-catenin produced severe osteopenia with striking increases in osteoclasts, whereas constitutive activation of β-catenin in the conditional Apc mutants resulted in dramatically increased bone deposition and a disappearance of osteoclasts. In vitro, osteoblasts lacking the β-catenin gene exhibited impaired maturation and mineralization with elevated expression of the osteoclast differentiation factor, receptor activated by nuclear factor-κB ligand (RANKL), and diminished expression of the RANKL decoy receptor, osteoprotegerin. By contrast, Apc-deficient osteoblasts matured normally but demonstrated decreased expression of RANKL and increased osteoprotegerin. These findings suggest that Wnt/β-catenin signaling in osteoblasts coordinates postnatal bone acquisition by controlling the differentiation and activity of both osteoblasts and osteoclasts.
Nature Medicine | 2011
Yajun Cui; Paul J. Niziolek; Bryan T. MacDonald; Cassandra R. Zylstra; Natalia Alenina; Dan R. Robinson; Zhendong Zhong; Susann Matthes; Christina M. Jacobsen; Ronald A. Conlon; Robert Brommage; Qingyun Liu; Faika Mseeh; David R. Powell; Qi M. Yang; Brian Zambrowicz; Han Gerrits; Jan A. Gossen; Xi He; Michael Bader; Bart O. Williams; Matthew L. Warman; Alexander G. Robling
The human skeleton is affected by mutations in low-density lipoprotein receptor-related protein 5 (LRP5). To understand how LRP5 influences bone properties, we generated mice with osteocyte-specific expression of inducible Lrp5 mutations that cause high and low bone mass phenotypes in humans. We found that bone properties in these mice were comparable to bone properties in mice with inherited mutations. We also induced an Lrp5 mutation in cells that form the appendicular skeleton but not in cells that form the axial skeleton; we observed that bone properties were altered in the limb but not in the spine. These data indicate that Lrp5 signaling functions locally, and they suggest that increasing LRP5 signaling in mature bone cells may be a strategy for treating human disorders associated with low bone mass, such as osteoporosis.
Journal of Bone and Mineral Research | 2004
Sheri L. Holmen; Troy A Giambernardi; Cassandra R. Zylstra; Bree D. Buckner-Berghuis; James H. Resau; J. Fred Hess; Vaida Glatt; Mary L. Bouxsein; Minrong Ai; Matthew L. Warman; Bart O. Williams
Humans and mice lacking Lrp5 have low BMD. To evaluate whether Lrp5 and Lrp6 interact genetically to control bone or skeletal development, we created mice carrying mutations in both Lrp5 and the related gene Lrp6. We found that compound mutants had dose‐dependent deficits in BMD and limb formation, suggesting functional redundancy between these two genes in bone and limb development.
Journal of Biological Chemistry | 2006
Charlotta Lindvall; Nicole Evans; Cassandra R. Zylstra; Yi Li; Caroline M. Alexander; Bart O. Williams
Canonical Wnt signaling has emerged as a critical regulatory pathway for stem cells. The association between ectopic activation of Wnt signaling and many different types of human cancer suggests that Wnt ligands can initiate tumor formation through altered regulation of stem cell populations. Here we have shown that mice deficient for the Wnt co-receptor Lrp5 are resistant to Wnt1-induced mammary tumors, which have been shown to be derived from the mammary stem/progenitor cell population. These mice exhibit a profound delay in tumorigenesis that is associated with reduced Wnt1-induced accumulation of mammary progenitor cells. In addition to the tumor resistance phenotype, loss of Lrp5 delays normal mammary development. The ductal trees of 5-week-old Lrp5-/- females have fewer terminal end buds, which are structures critical for juvenile ductal extension presumed to be rich in stem/progenitor cells. Consequently, the mature ductal tree is hypomorphic and does not completely fill the fat pad. Furthermore, Lrp5-/- ductal cells from mature females exhibit little to no stem cell activity in limiting dilution transplants. Finally, we have shown that Lrp5-/- embryos exhibit substantially impaired canonical Wnt signaling in the primitive stem cell compartment of the mammary placodes. These findings suggest that Lrp5-mediated canonical signaling is required for mammary ductal stem cell activity and for tumor development in response to oncogenic Wnt effectors.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Ximeng Liu; Katia J. Bruxvoort; Cassandra R. Zylstra; Jiarong Liu; Rachel Cichowski; Marie Claude Faugere; Mary L. Bouxsein; Chao Wan; Bart O. Williams; Thomas L. Clemens
Bone formation is carried out by the osteoblast, a mesenchymal cell whose lifespan and activity are regulated by growth factor signaling networks. Growth factors activate phosphatidylinositol 3-kinase (PI3K), which enhances cell survival and antagonizes apoptosis through activation of Akt/PKB. This process is negatively regulated by the Pten phosphatase, which inhibits the activity of PI3K. In this study, we investigated the effects of Akt activation in bone in vivo by conditionally disrupting the Pten gene in osteoblasts by using Cre-mediated recombination. Mice deficient in Pten in osteoblasts were of normal size but demonstrated a dramatic and progressively increasing bone mineral density throughout life. In vitro osteoblasts lacking Pten differentiated more rapidly than controls and exhibited greatly reduced apoptosis in association with markedly increased levels of phosphorylated Akt and activation of signaling pathways downstream of activated Akt. These findings support a critical role for this tumor-suppressor gene in regulating osteoblast lifespan and likely explain the skeletal abnormalities in patients carrying germ-line mutations of PTEN.
PLOS ONE | 2009
Charlotta Lindvall; Cassandra R. Zylstra; Nicole Evans; Richard A. West; Karl Dykema; Kyle A. Furge; Bart O. Williams
Canonical Wnt signals are transduced through a Frizzled receptor and either the LRP5 or LRP6 co-receptor; such signals play central roles during development and in disease. We have previously shown that Lrp5 is required for ductal stem cell activity and that loss of Lrp5 delays normal mammary development and Wnt1-induced tumorigenesis. Here we show that canonical Wnt signals through the Lrp6 co-receptor are also required for normal mouse mammary gland development. Loss of Lrp6 compromises Wnt/β-catenin signaling and interferes with mammary placode, fat pad, and branching development during embryogenesis. Heterozygosity for an inactivating mutation in Lrp6 is associated with a reduced number of terminal end buds and branches during postnatal development. While Lrp6 is expressed in both the basal and luminal mammary epithelium during embryogenesis, Lrp6 expression later becomes restricted to cells residing in the basal epithelial layer. Interestingly, these cells also express mammary stem cell markers. In humans, increased Lrp6 expression is associated with basal-like breast cancer. Taken together, our results suggest both overlapping and specific functions for Lrp5 and Lrp6 in the mammary gland.
Current Drug Targets | 2008
Dan R. Robinson; Cassandra R. Zylstra; Bart O. Williams
Canonical Wnt signaling has emerged as an important pathway that underlies the initia nottion of prostate cancer. Both human cancers and mouse models have confirmed that mutations or altered expression of components of this pathway are associated with prostate tumors. Additionally, several reports suggest that this pathway plays a key role in the establishment of skeletal metastasis. This review discusses our current knowledge of the Wnt signaling pathway in the development of prostate cancer. First, we will overview the Wnt signaling pathway to provide background for the rest of the discussion. We will then review the literature on the role of this pathway and the down notstream effector, beta-catenin, in the development and progression of prostate cancer and skeletal metastasis. We will also discuss reports that suggest that beta-catenin can directly interact with the androgen receptor to modulate its activity. These recent developments may provide insight into how tumor growth can be achieved under androgen deprivation. Finally, we speculate on how the pathway may be targeted for therapeutic treatment and what agents may be available to achieve this goal.
Journal of Biological Chemistry | 2002
Sheri L. Holmen; Adrian Salic; Cassandra R. Zylstra; Marc W. Kirschner; Bart O. Williams
Wnt proteins initiate the canonical (β-catenin-regulated) signaling cascade by binding to seven-transmembrane spanning receptors of the Frizzled (Fz) family together with the coreceptors LRP5 and -6, members of the low density lipoprotein receptor-related protein family (LRP). Several reports have shown physical and functional associations between various Wnt, LRP, and Frizzled molecules; however, the underlying mechanisms for selectivity remain poorly understood. We present data on a novel set of Wnt-Fz fusion constructs that are useful for elucidating mechanisms of Wnt signal transduction specificity in both Xenopus embryos and 293T cells. In 293T cells, coexpression of several Wnt-Fz fusion proteins with LRP6, but not LRP5, significantly activated a Wnt-responsive promoter, Optimized TOPFlash. Interestingly, Wnt proteins from both the Wnt1 and Wnt5A classes, when fused to the same Frizzled, can synergize with LRP6 to activate signaling and induce secondary axes in Xenopus embryos. However, when several Wnt-Fz constructs containing different Frizzled molecules were tested, it was found that all Frizzled molecules are not equivalent in their ability to activate the canonical Wnt pathway in this context. The data suggest that the distinction between the two Wnt classes lies not in intrinsic differences in the molecules but via the Frizzled molecules with which they interact.
Cancer Research | 2007
Katia J. Bruxvoort; Holli M. Charbonneau; Troy A Giambernardi; James C. Goolsby; Chao Nan Qian; Cassandra R. Zylstra; Dan R. Robinson; Pradip Roy-Burman; Aubie Shaw; Bree D. Buckner-Berghuis; Robert E. Sigler; James H. Resau; Ruth Sullivan; Wade Bushman; Bart O. Williams
Alterations of the Wnt/beta-catenin signaling pathway are positively associated with the development and progression of human cancer, including carcinoma of the prostate. To determine the role of activated Wnt/beta-catenin signaling in mouse prostate carcinogenesis, we created a mouse prostate tumor model using probasin-Cre-mediated deletion of Apc. Prostate tumors induced by the deletion of Apc have elevated levels of beta-catenin protein and are highly proliferative. Tumor formation is fully penetrant and follows a consistent pattern of progression. Hyperplasia is observed as early as 4.5 weeks of age, and adenocarcinoma is observed by 7 months. Continued tumor growth usually necessitated sacrifice between 12 and 15 months of age. Despite the high proliferation rate, we have not observed metastasis of these tumors to the lymph nodes or other organs. Surgical castration of 6-week-old mice inhibited tumor formation, and castration of mice with more advanced tumors resulted in the partial regression of specific prostate glands. However, significant areas of carcinoma remained 2 months postcastration, suggesting that tumors induced by Apc loss of function are capable of growth under conditions of androgen depletion. We conclude that the prostate-specific deletion of Apc and the increased expression of beta-catenin associated with prostate carcinoma suggests a role for beta-catenin in prostate cancer and offers an appropriate animal model to investigate the interaction of Wnt signaling with other genetic and epigenetic signals in prostate carcinogenesis.
PLOS Pathogens | 2007
John J. Young; Jennifer L. Bromberg-White; Cassandra R. Zylstra; Joseph T Church; Elissa Boguslawski; James H. Resau; Bart O. Williams; Nicholas S. Duesbery
Anthrax toxin (AnTx) plays a key role in the pathogenesis of anthrax. AnTx is composed of three proteins: protective antigen (PA), edema factor, and lethal factor (LF). PA is not toxic but serves to bind cells and translocate the toxic edema factor or LF moieties to the cytosol. Recently, the low-density lipoprotein receptor–related protein LRP6 has been reported to mediate internalization and lethality of AnTx. Based on its similarity to LRP6, we hypothesized that LRP5 may also play a role in cellular uptake of AnTx. We assayed PA-dependent uptake of anthrax LF or a cytotoxic LF fusion protein (FP59) in cells and mice harboring targeted deletions of Lrp5 or Lrp6. Unexpectedly, we observed that uptake was unaltered in the presence or absence of either Lrp5 or Lrp6 expression. Moreover, we observed efficient PA-mediated uptake into anthrax toxin receptor (ANTXR)–deficient Chinese hamster ovary cells (PR230) that had been stably engineered to express either human ANTXR1 or human ANTXR2 in the presence or absence of siRNA specific for LRP5 or LRP6. Our results demonstrate that neither LRP5 nor LRP6 is necessary for PA-mediated internalization or lethality of anthrax lethal toxin.