Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bart O. Williams is active.

Publication


Featured researches published by Bart O. Williams.


Current Biology | 1994

Tumor spectrum analysis in p53-mutant mice

Tyler Jacks; Lee Remington; Bart O. Williams; Earlene M. Schmitt; Schlomit Halachmi; Roderick T. Bronson; Robert A. Weinberg

BACKGROUND The p53 tumor suppressor gene is mutated in a large percentage of human malignancies, including tumors of the colon, breast, lung and brain. Individuals who inherit one mutant allele of p53 are susceptible to a wide range of tumor types. The gene encodes a transcriptional regulator that may function in the cellular response to DNA damage. The construction of mouse strains carrying germline mutations of p53 facilitates analysis of the function of p53 in normal cells and tumorigenesis. RESULTS In order to study the effects of p53 mutation in vivo, we have constructed a mouse strain carrying a germline disruption of the gene. This mutation removes approximately 40% of the coding capacity of p53 and completely eliminates synthesis of p53 protein. As observed previously for a different germline mutation of p53, animals homozygous for this p53 deletion mutation are viable but highly predisposed to malignancy. Heterozygous animals also have an increased cancer risk, although the distribution of tumor types in these animals differs from that in homozygous mutants. In most cases, tumorigenesis in heterozygous animals is accompanied by loss of the wild-type p53 allele. CONCLUSION We reaffirm that p53 function is not required for normal mouse development and conclude that p53 status can strongly influence tumor latency and tissue distribution.


Cell | 2006

TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth

Ken Inoki; Hongjiao Ouyang; Tianqing Zhu; Charlotta Lindvall; Yian Wang; Xiaojie Zhang; Qian Yang; Christina N. Bennett; Yuko Harada; Kryn Stankunas; Cun-Yu Wang; Xi He; Ormond A. MacDougald; Ming You; Bart O. Williams; Kun-Liang Guan

Mutation in the TSC2 tumor suppressor causes tuberous sclerosis complex, a disease characterized by hamartoma formation in multiple tissues. TSC2 inhibits cell growth by acting as a GTPase-activating protein toward Rheb, thereby inhibiting mTOR, a central controller of cell growth. Here, we show that Wnt activates mTOR via inhibiting GSK3 without involving beta-catenin-dependent transcription. GSK3 inhibits the mTOR pathway by phosphorylating TSC2 in a manner dependent on AMPK-priming phosphorylation. Inhibition of mTOR by rapamycin blocks Wnt-induced cell growth and tumor development, suggesting a potential therapeutic value of rapamycin for cancers with activated Wnt signaling. Our results show that, in addition to transcriptional activation, Wnt stimulates translation and cell growth by activating the TSC-mTOR pathway. Furthermore, the sequential phosphorylation of TSC2 by AMPK and GSK3 reveals a molecular mechanism of signal integration in cell growth regulation.


Science | 2005

Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis.

Maria Domenica Castellone; Hidemi Teramoto; Bart O. Williams; Kirk M. Druey; J. Silvio Gutkind

How cyclooxygenase-2 (COX-2) and its proinflammatory metabolite prostaglandin E2 (PGE2) enhance colon cancer progression remains poorly understood. We show that PGE2 stimulates colon cancer cell growth through its heterotrimeric guanine nucleotide-binding protein (G protein)–coupled receptor, EP2, by a signaling route that involves the activation of phosphoinositide 3-kinase and the protein kinase Akt by free G protein βγ subunits and the direct association of the G protein αs subunit with the regulator of G protein signaling (RGS) domain of axin. This leads to the inactivation and release of glycogen synthase kinase 3β from its complex with axin, thereby relieving the inhibitory phosphorylation of β-catenin and activating its signaling pathway. These findings may provide a molecular framework for the future evaluation of chemopreventive strategies for colorectal cancer.


Journal of Biological Chemistry | 2005

Essential Role of β-Catenin in Postnatal Bone Acquisition

Sheri L. Holmen; Cassandra R. Zylstra; Aditi Mukherjee; Robert E. Sigler; Marie Claude Faugere; Mary L. Bouxsein; Lianfu Deng; Thomas L. Clemens; Bart O. Williams

Mutations in the Wnt co-receptor LRP5 alter bone mass in humans, but the mechanisms responsible for Wnts actions in bone are unclear. To investigate the role of the classical Wnt signaling pathway in osteogenesis, we generated mice lacking the β-catenin or adenomatous polyposis coli (Apc) genes in osteoblasts. Loss of β-catenin produced severe osteopenia with striking increases in osteoclasts, whereas constitutive activation of β-catenin in the conditional Apc mutants resulted in dramatically increased bone deposition and a disappearance of osteoclasts. In vitro, osteoblasts lacking the β-catenin gene exhibited impaired maturation and mineralization with elevated expression of the osteoclast differentiation factor, receptor activated by nuclear factor-κB ligand (RANKL), and diminished expression of the RANKL decoy receptor, osteoprotegerin. By contrast, Apc-deficient osteoblasts matured normally but demonstrated decreased expression of RANKL and increased osteoprotegerin. These findings suggest that Wnt/β-catenin signaling in osteoblasts coordinates postnatal bone acquisition by controlling the differentiation and activity of both osteoblasts and osteoclasts.


Nature Medicine | 2011

Lrp5 functions in bone to regulate bone mass

Yajun Cui; Paul J. Niziolek; Bryan T. MacDonald; Cassandra R. Zylstra; Natalia Alenina; Dan R. Robinson; Zhendong Zhong; Susann Matthes; Christina M. Jacobsen; Ronald A. Conlon; Robert Brommage; Qingyun Liu; Faika Mseeh; David R. Powell; Qi M. Yang; Brian Zambrowicz; Han Gerrits; Jan A. Gossen; Xi He; Michael Bader; Bart O. Williams; Matthew L. Warman; Alexander G. Robling

The human skeleton is affected by mutations in low-density lipoprotein receptor-related protein 5 (LRP5). To understand how LRP5 influences bone properties, we generated mice with osteocyte-specific expression of inducible Lrp5 mutations that cause high and low bone mass phenotypes in humans. We found that bone properties in these mice were comparable to bone properties in mice with inherited mutations. We also induced an Lrp5 mutation in cells that form the appendicular skeleton but not in cells that form the axial skeleton; we observed that bone properties were altered in the limb but not in the spine. These data indicate that Lrp5 signaling functions locally, and they suggest that increasing LRP5 signaling in mature bone cells may be a strategy for treating human disorders associated with low bone mass, such as osteoporosis.


Journal of Bone and Mineral Research | 2004

Decreased BMD and Limb Deformities in Mice Carrying Mutations in Both Lrp5 and Lrp6

Sheri L. Holmen; Troy A Giambernardi; Cassandra R. Zylstra; Bree D. Buckner-Berghuis; James H. Resau; J. Fred Hess; Vaida Glatt; Mary L. Bouxsein; Minrong Ai; Matthew L. Warman; Bart O. Williams

Humans and mice lacking Lrp5 have low BMD. To evaluate whether Lrp5 and Lrp6 interact genetically to control bone or skeletal development, we created mice carrying mutations in both Lrp5 and the related gene Lrp6. We found that compound mutants had dose‐dependent deficits in BMD and limb formation, suggesting functional redundancy between these two genes in bone and limb development.


Molecular and Cellular Biology | 1996

Altered cell cycle kinetics, gene expression, and G1 restriction point regulation in Rb-deficient fibroblasts.

R E Herrera; V P Sah; Bart O. Williams; T P Mäkelä; Robert A. Weinberg; Tyler Jacks

Fibroblasts prepared from retinoblastoma (Rb) gene-negative mouse embryos exhibit a shorter G1 phase of the growth cycle and smaller size than wild-type cells. In addition, the mutant cells are no longer inhibited by low levels of cycloheximide at any point in G1 but do remain sensitive to serum withdrawal until late in G1. Certain cell cycle-regulated genes showed no temporal or quantitative differences in expression. In contrast, cyclin E expression in Rb-deficient cells is deregulated in two ways. Cyclin E mRNA is generally derepressed in mutant cells and reaches peak levels about 6 h earlier in G1 than in wild-type cells. Moreover, cyclin E protein levels are higher in the Rb-/- cells than would be predicted from the levels of its mRNA. Thus, the selective growth advantage conferred by Rb gene deletion during tumorigenesis may be explained in part by changes in the regulation of cyclin E. In addition, the mechanisms defining the restriction point of late G1 may consist of at least two molecular events, one cycloheximide sensitive and pRb dependent and the other serum sensitive and pRb independent.


The EMBO Journal | 1994

Extensive contribution of Rb-deficient cells to adult chimeric mice with limited histopathological consequences

Bart O. Williams; Earlene M. Schmitt; Lee Remington; Roderick T. Bronson; D M Albert; Robert A. Weinberg; Tyler Jacks

Homozygosity for a mutation in the Rb tumor suppressor gene causes mid‐gestation embryonic lethality in the mouse. Using a two‐step targeting protocol, we have constructed Rb homozygous mutant mouse embryonic stem cells and used them to create chimeric animals partially composed of Rb‐deficient cells. Analysis of these chimeras demonstrates widespread contribution of the mutant cells to adult tissues, including the retina and mature erythrocytes. Despite the presence of large numbers of Rb‐deficient cells in most tissues of these mice, they are remarkably normal but do exhibit certain histological defects including cataracts, hyperplasia of the adrenal medulla, and enlarged cells in the cerebellum and the liver. Like animals heterozygous for the Rb mutation, the chimeras develop tumors of the intermediate lobe of the pituitary, and the rate of pituitary tumorigenesis is greatly accelerated.


Cell Stem Cell | 2009

mTOR Mediates Wnt-Induced Epidermal Stem Cell Exhaustion and Aging

Rogerio M. Castilho; Cristiane H. Squarize; Lewis A. Chodosh; Bart O. Williams; J. Silvio Gutkind

Epidermal integrity is a complex process established during embryogenesis and maintained throughout the organism lifespan by epithelial stem cells. Although Wnt regulates normal epithelial stem cell renewal, aberrant Wnt signaling can contribute to cancerous growth. Here, we explored the consequences of persistent expressing Wnt1 in an epidermal compartment that includes the epithelial stem cells. Surprisingly, Wnt caused the rapid growth of the hair follicles, but this was followed by epithelial cell senescence, disappearance of the epidermal stem cell compartment, and progressive hair loss. Although Wnt1 induced the activation of beta-catenin and the mTOR pathway, both hair follicle hyperproliferation and stem cell exhaustion were strictly dependent on mTOR function. These findings suggest that whereas activation of beta-catenin contributes to tumor growth, epithelial stem cells may be endowed with a protective mechanism that results in cell senescence upon the persistent stimulation of proliferative pathways that activate mTOR, ultimately suppressing tumor formation.


Cancer Research | 2007

Mouse Model of Colonic Adenoma-Carcinoma Progression Based on Somatic Apc Inactivation

Takao Hinoi; Aytekin Akyol; Brian K. Theisen; David O. Ferguson; Joel K. Greenson; Bart O. Williams; Kathleen R. Cho; Eric R. Fearon

Mutations in the adenomatous polyposis coli (APC) gene are pivotal in colorectal tumorigenesis. Existing mouse intestinal tumor models display mainly small intestinal lesions and carcinomas are rare. We defined human CDX2 sequences conferring colon epithelium-preferential transgene expression in the adult mouse. Mice carrying a CDX2P-NLS Cre recombinase transgene and a loxP-targeted Apc allele developed mainly colorectal tumors, with carcinomas seen in 6 of 36 (17%) of mice followed for 300 days. Like human colorectal lesions, the mouse tumors showed biallelic Apc inactivation, beta-catenin dysregulation, global DNA hypomethylation, and aneuploidy. The predominantly distal colon and rectal distribution of tumors seen in mice where one Apc allele was inactivated in epithelial cells from distal ileum to rectum suggests that regional differences in the intestinal tract in the frequency and nature of secondary genetic and epigenetic events associated with adenoma outgrowth have a contributing role in determining where adenomas develop. The presence of large numbers of small intestine tumors seemed to inhibit colorectal tumor development in the mouse, and gender-specific effects on tumor multiplicity in the distal mouse colon and rectum mimic the situation in humans where males have a larger number of advanced adenomas and carcinomas in the distal colon and rectum than females. The mouse model of colon-preferential gene targeting described here should facilitate efforts to define novel factors and mechanisms contributing to human colon tumor pathogenesis, as well as work on tumor-promoting environmental factors and agents and strategies for cancer prevention and treatment.

Collaboration


Dive into the Bart O. Williams's collaboration.

Top Co-Authors

Avatar

Tyler Jacks

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Tean Teh

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sheri L. Holmen

Huntsman Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge