Catalina Tsai
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Catalina Tsai.
Environmental Science & Technology | 2012
Cora J. Young; Rebecca A. Washenfelder; James M. Roberts; Levi H Mielke; Hans D. Osthoff; Catalina Tsai; Olga Pikelnaya; J. Stutz; P. R. Veres; Anthony Cochran; Trevor C. VandenBoer; James Flynn; N. Grossberg; Christine Haman; Barry Lefer; Harald Stark; Martin Graus; Joost A. de Gouw; J. B. Gilman; William C. Kuster; Steven S. Brown
Photolabile nighttime radical reservoirs, such as nitrous acid (HONO) and nitryl chloride (ClNO(2)), contribute to the oxidizing potential of the atmosphere, particularly in early morning. We present the first vertically resolved measurements of ClNO(2), together with vertically resolved measurements of HONO. These measurements were acquired during the California Nexus (CalNex) campaign in the Los Angeles basin in spring 2010. Average profiles of ClNO(2) exhibited no significant dependence on height within the boundary layer and residual layer, although individual vertical profiles did show variability. By contrast, nitrous acid was strongly enhanced near the ground surface with much smaller concentrations aloft. These observations are consistent with a ClNO(2) source from aerosol uptake of N(2)O(5) throughout the boundary layer and a HONO source from dry deposition of NO(2) to the ground surface and subsequent chemical conversion. At ground level, daytime radical formation calculated from nighttime-accumulated HONO and ClNO(2) was approximately equal. Incorporating the different vertical distributions by integrating through the boundary and residual layers demonstrated that nighttime-accumulated ClNO(2) produced nine times as many radicals as nighttime-accumulated HONO. A comprehensive radical budget at ground level demonstrated that nighttime radical reservoirs accounted for 8% of total radicals formed and that they were the dominant radical source between sunrise and 09:00 Pacific daylight time (PDT). These data show that vertical gradients of radical precursors should be taken into account in radical budgets, particularly with respect to HONO.
Geophysical Research Letters | 2015
Lynne E. Gratz; Jesse L. Ambrose; Daniel A. Jaffe; Viral Shah; Lyatt Jaeglé; J. Stutz; James Festa; Max Spolaor; Catalina Tsai; Noelle E. Selin; Shaojie Song; X. Zhou; Andrew J. Weinheimer; D. J. Knapp; D. D. Montzka; F. Flocke; Teresa L. Campos; Eric C. Apel; Rebecca S. Hornbrook; Nicola J. Blake; Samuel R. Hall; Geoffrey S. Tyndall; M. Reeves; D. Stechman; Meghan Stell
Mercury is a global toxin that can be introduced to ecosystems through atmospheric deposition. Mercury oxidation is thought to occur in the free troposphere by bromine radicals, but direct observational evidence for this process is currently unavailable. During the 2013 Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks campaign, we measured enhanced oxidized mercury and bromine monoxide in a free tropospheric air mass over Texas. We use trace gas measurements, air mass back trajectories, and a chemical box model to confirm the origin and chemical history of the sampled air mass. We find the presence of elevated oxidized mercury to be consistent with oxidation of elemental mercury by bromine atoms in this subsiding upper tropospheric air mass within the subtropical Pacific High, where dry atmospheric conditions are conducive to oxidized mercury accumulation. Our results support the role of bromine as the dominant oxidant of mercury in the upper troposphere.
Nature | 2016
Chunxiang Ye; X. Zhou; Dennis Pu; J. Stutz; James Festa; Max Spolaor; Catalina Tsai; C. A. Cantrell; Roy L. Mauldin; Teresa L. Campos; Andrew J. Weinheimer; Rebecca S. Hornbrook; Eric C. Apel; Alex Guenther; Lisa Kaser; Bin Yuan; Thomas Karl; Julie Haggerty; Samuel R. Hall; Kirk Ullmann; James N. Smith; John Ortega; Christoph Knote
Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A ‘renoxification’ process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth’s surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.
Journal of Geophysical Research | 2016
Stephen M. Griffith; R. F. Hansen; S. Dusanter; Vincent Michoud; J. B. Gilman; William C. Kuster; P. R. Veres; Martin Graus; J. A. de Gouw; James M. Roberts; Cora J. Young; Rebecca A. Washenfelder; Steven S. Brown; Ryan Thalman; Eleanor M. Waxman; R. Volkamer; Catalina Tsai; J. Stutz; James Flynn; N. Grossberg; Barry Lefer; S. Alvarez; Bernhard Rappenglueck; Levi H Mielke; Hans D. Osthoff; Philip S. Stevens
Measurements of hydroxyl (OH) and hydroperoxy (HO2*) radical concentrations were made at the Pasadena ground site during the CalNex-LA 2010 campaign using the laser-induced fluorescence-fluorescence assay by gas expansion technique. The measured concentrations of OH and HO2* exhibited a distinct weekend effect, with higher radical concentrations observed on the weekends corresponding to lower levels of nitrogen oxides (NOx). The radical measurements were compared to results from a zero-dimensional model using the Regional Atmospheric Chemical Mechanism-2 constrained by NOx and other measured trace gases. The chemical model overpredicted measured OH concentrations during the weekends by a factor of approximately 1.4 ± 0.3 (1σ), but the agreement was better during the weekdays (ratio of 1.0 ± 0.2). Model predicted HO2* concentrations underpredicted by a factor of 1.3 ± 0.2 on the weekends, while measured weekday concentrations were underpredicted by a factor of 3.0 ± 0.5. However, increasing the modeled OH reactivity to match the measured total OH reactivity improved the overall agreement for both OH and HO2* on all days. A radical budget analysis suggests that photolysis of carbonyls and formaldehyde together accounted for approximately 40% of radical initiation with photolysis of nitrous acid accounting for 30% at the measurement height and ozone photolysis contributing less than 20%. An analysis of the ozone production sensitivity reveals that during the week, ozone production was limited by volatile organic compounds throughout the day during the campaign but NOx limited during the afternoon on the weekends.
Journal of Geophysical Research | 2014
J R Pinto; Jack E. Dibb; Ben H. Lee; Bernhard Rappenglück; E. C. Wood; Misti Levy; Renyi Zhang; Barry Lefer; Xinrong Ren; J. Stutz; Catalina Tsai; L. Ackermann; J. Golovko; Scott C. Herndon; M. Oakes; Q.-Y. Meng; J. W. Munger; Mark S. Zahniser; Jun Zheng
Because of the importance of HONO as a radical reservoir, consistent and accurate measurements of its concentration are needed. As part of SHARP (Study of Houston Atmospheric Radical Precursors), time series of HONO were obtained by six different measurement techniques on the roof of the Moody Tower at the University of Houston. Techniques used were long path differential optical absorption spectroscopy (DOAS), stripping coil-visible absorption photometry (SC-AP), long path absorption photometry (LOPAP®), mist chamber/ion chromatography (MC-IC), quantum cascade-tunable infrared laser differential absorption spectroscopy (QC-TILDAS), and ion drift-chemical ionization mass spectrometry (ID-CIMS). Various combinations of techniques were in operation from 15 April through 31 May 2009. All instruments recorded a similar diurnal pattern of HONO concentrations with higher median and mean values during the night than during the day. Highest values were observed in the final 2 weeks of the campaign. Inlets for the MC-IC, SC-AP, and QC-TILDAS were collocated and agreed most closely with each other based on several measures. Largest differences between pairs of measurements were evident during the day for concentrations < ~100 parts per trillion (ppt). Above ~ 200 ppt, concentrations from the SC-AP, MC-IC, and QC-TILDAS converged to within about 20%, with slightly larger discrepancies when DOAS was considered. During the first 2 weeks, HONO measured by ID-CIMS agreed with these techniques, but ID-CIMS reported higher values during the afternoon and evening of the final 4 weeks, possibly from interference from unknown sources. A number of factors, including building related sources, likely affected measured concentrations.
Journal of Geophysical Research | 2014
Catalina Tsai; Clare Wong; Steve C. Hurlock; Olga Pikelnaya; Levi H Mielke; Hans D. Osthoff; James Flynn; Christine Haman; Barry Lefer; J. B. Gilman; Joost A. de Gouw; J. Stutz
The chemical removal of NOx at night in urban areas remains poorly constrained due to uncertainties in the contribution of various loss pathways and the impact of the suppressed nocturnal vertical mixing. Here we present long-path differential optical absorption spectroscopy observations of nocturnal vertical concentration profiles of O3, NO2, and NO3 in the lower atmosphere (33–556 m above ground level) measured during the CalNex-LA 2010 study. Positive nocturnal vertical gradients of O3 and NO3 and negative gradients of NO2 were observed during the night. Relatively short lifetime of nocturnal NO3 (less than 1000 s) and high nighttime steady state N2O5 mixing ratios (up to 2 ppb) indicated active nocturnal chemistry during CalNex. Comparison of modeled and observed altitude-resolved NO3 loss frequencies shows that hydrolysis of N2O5 on aerosols was the dominant loss pathway of NO3 and NOx. Based on this argument, the nocturnal loss rates of NOx, L(NOx), at different altitudes and averaged over the lowest 550 m of the atmosphere were calculated. The nocturnally averaged L(NOx) ranged between 0.8 and 1.3 ppb h−1 for the lower atmosphere with the L(NOx) for the first 8 days at about 1 ppb h−1. This number is close to the one previously determined in Houston in 2009 of ~0.9 ppb h−1. Comparisons between daytime NOx loss due to the OH + NO2 reaction and nighttime L(NOx) show that during CalNex, nocturnal chemistry contributed an average of 60% to the removal of NOx in a 24 h period in the lower atmosphere.
Environmental Science & Technology | 2015
S. E. Pusede; Trevor C. VandenBoer; Jennifer G. Murphy; Milos Z. Markovic; Cora J. Young; P. R. Veres; James M. Roberts; Rebecca A. Washenfelder; Steven S. Brown; Xinrong Ren; Catalina Tsai; J. Stutz; William H. Brune; E. C. Browne; P. J. Wooldridge; Ashley R. Graham; R. J. Weber; Allen H. Goldstein; S. Dusanter; Stephen M. Griffith; Philip S. Stevens; Barry Lefer; R. C. Cohen
Recent observations suggest a large and unknown daytime source of nitrous acid (HONO) to the atmosphere. Multiple mechanisms have been proposed, many of which involve chemistry that reduces nitrogen dioxide (NO2) on some time scale. To examine the NO2 dependence of the daytime HONO source, we compare weekday and weekend measurements of NO2 and HONO in two U.S. cities. We find that daytime HONO does not increase proportionally to increases in same-day NO2, i.e., the local NO2 concentration at that time and several hours earlier. We discuss various published HONO formation pathways in the context of this constraint.
Atmospheric Measurement Techniques Discussions | 2016
J. Stutz; Bodo Werner; Max Spolaor; Lisa Scalone; James Festa; Catalina Tsai; Ross Cheung; Santo Fedele Colosimo; Ugo Tricoli; Rasmus Raecke; R. Hossaini; M. P. Chipperfield; W. Feng; R. S. Gao; Eric J. Hintsa; J. W. Elkins; F. L. Moore; Bruce C. Daube; J. V. Pittman; Steven C. Wofsy; K. Pfeilsticker
Observations of atmospheric trace gases in the tropical upper troposphere (UT), tropical tropopause layer (TTL), and lower stratosphere (LS) require dedicated measurement platforms and instrumentation. Here we present a new limb-scanning Differential Optical Absorption Spectroscopy (DOAS) instrument developed for NASA’s Global Hawk (GH) unmanned aerial system and deployed during the Airborne Tropical TRopopause EXperiment (ATTREX). The mini-DOAS system is designed for automatic operation under unpressurized and unheated conditions at 14–18 km altitude, collecting scattered sunlight in three wavelength windows: UV (301–387 nm), visible (410–525 nm), and near infrared (900–1700 nm). A telescope scanning unit allows selection of a viewing angle around the limb, as well as realtime correction of the aircraft pitch. Due to the high altitude, solar reference spectra are measured using diffusors and direct sunlight. The DOAS approach allows retrieval of slant column densities (SCDs) of O3, O4, NO2, and BrO with relative errors similar to other aircraft DOAS systems. Radiative transfer considerations show that the retrieval of trace gas mixing ratios from the observed SCD based on O4 observations, the most common approach for DOAS measurements, is inadequate for high-altitude observations. This is due to the frequent presence of low-altitude clouds, which shift the sensitivity of the O4 SCD into the lower atmosphere and make it highly dependent on cloud coverage. A newly developed technique that constrains the radiative transfer by comparing in situ and DOAS O3 observations overcomes this issue. Extensive sensitivity calculations show that the novel O3-scaling technique allows the retrieval of BrO and NO2 mixing ratios at high accuracies of 0.5 and 15 ppt, respectively. The BrO and NO2 mixing ratios and vertical profiles observed during ATTREX thus provide new insights into ozone and halogen chemistry in the UT, TTL, and LS.
Archive | 2013
J. Stutz; Kam Weng Wong; Catalina Tsai
Measurements of daytime nitrous acid (HONO) are reviewed and possible daytime sources of HONO are discussed. The importance of the observed daytime HONO mixing ratios for the HOx budget in urban and rural environments is assessed and recommendation for future work are given.
Atmospheric Chemistry and Physics | 2017
Si-Wan Kim; Vijay Natraj; Seoyoung Lee; Hyeong-Ahn Kwon; Rokjin J. Park; Joost A. de Gouw; G. J. Frost; Jhoon Kim; J. Stutz; M. Trainer; Catalina Tsai; Carsten Warneke
Formaldehyde (HCHO) is either directly emitted from sources or produced during the oxidation of volatile organic compounds (VOCs) in the troposphere. It is possible to infer atmospheric HCHO concentrations using space-based observations, which may be useful for studying emissions and tropospheric chemistry at urban to global scales depending on the quality of the retrievals. In the near future, an unprecedented volume of satellite-based HCHO measurement data will be available from both geostationary and polarorbiting platforms. Therefore, it is essential to develop retrieval methods appropriate for the next-generation satellites that measure at higher spatial and temporal resolution than the current ones. In this study, we examine the importance of fine spatial and temporal resolution a priori profile information on the retrieval by conducting approximately 45 000 radiative transfer (RT) model calculations in the Los Angeles Basin (LA Basin) megacity. Our analyses suggest that an air mass factor (AMF, a factor converting observed slant columns to vertical columns) based on fine spatial and temporal resolution a priori profiles can better capture the spatial distributions of the enhanced HCHO plumes in an urban area than the nearly constant AMFs used for current operational products by increasing the columns by ∼ 50 % in the domain average and up to 100 % at a finer scale. For this urban area, the AMF values are inversely proportional to the magnitude of the HCHO mixing ratios in the boundary layer. Using our optimized model HCHO results in the Los Angeles Basin that mimic the HCHO retrievals from future geostationary satellites, we illustrate the effectiveness of HCHO data from geostationary measurements for understanding and predicting tropospheric ozone and its precursors.