Catarina V. Horta
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Catarina V. Horta.
Journal of Immunology | 2010
Grace Kelly Silva; Fredy R. S. Gutierrez; Paulo Marcos da Matta Guedes; Catarina V. Horta; Larissa D. Cunha; Tiago W. P. Mineo; Juliana Santiago-Silva; Koichi S. Kobayashi; Richard A. Flavell; João S. Silva; Dario S. Zamboni
An effective innate immune recognition of the intracellular protozoan parasite Trypanosoma cruzi is critical for host resistance against Chagas disease, a severe and chronic illness that affects millions of people in Latin America. In this study, we evaluated the participation of nucleotide-binding oligomerization domain (Nod)-like receptor proteins in host response to T. cruzi infection and found that Nod1-dependent, but not Nod2-dependent, responses are required for host resistance against infection. Bone marrow-derived macrophages from Nod1−/− mice showed an impaired induction of NF-κB–dependent products in response to infection and failed to restrict T. cruzi infection in presence of IFN-γ. Despite normal cytokine production in the sera, Nod1−/− mice were highly susceptible to T. cruzi infection, in a similar manner to MyD88−/− and NO synthase 2−/− mice. These studies indicate that Nod1-dependent responses account for host resistance against T. cruzi infection by mechanisms independent of cytokine production.
Journal of Immunology | 2011
Marcelo S. F. Pereira; Giuliano F. Morgantetti; Liliana M. Massis; Catarina V. Horta; Juliana I. Hori; Dario S. Zamboni
Although NLRC4/IPAF activation by flagellin has been extensively investigated, the downstream signaling pathways and the mechanisms responsible for infection clearance remain unclear. In this study, we used mice deficient for the inflammasome components in addition to wild-type (WT) Legionella pneumophila or bacteria deficient for flagellin (flaA) or motility (fliI) to assess the pathways responsible for NLRC4-dependent growth restriction in vivo and ex vivo. By comparing infections with WT L. pneumophila, fliI, and flaA, we found that flagellin and motility are important for the colonization of the protozoan host Acanthamoeba castellanii. However, in macrophages and mammalian lungs, flagellin expression abrogated bacterial replication. The flagellin-mediated growth restriction was dependent on NLRC4, and although it was recently demonstrated that NLRC4 is able to recognize bacteria independent of flagellin, we found that the NLRC4-dependent restriction of L. pneumophila multiplication was fully dependent on flagellin. By examining infected caspase-1−/− mice and macrophages with flaA, fliI, and WT L. pneumophila, we could detect greater replication of flaA, which suggests that caspase-1 only partially accounted for flagellin-dependent growth restriction. Conversely, WT L. pneumophila multiplied better in macrophages and mice deficient for NLRC4 compared with that in macrophages and mice deficient for caspase-1, supporting the existence of a novel caspase-1–independent response downstream of NLRC4. This response operated early after macrophage infection and accounted for the restriction of bacterial replication within bacteria-containing vacuoles. Collectively, our data indicate that flagellin is required for NLRC4-dependent responses to L. pneumophila and that NLRC4 triggers caspase-1–dependent and –independent responses for bacterial growth restriction in macrophages and in vivo.
Journal of Immunology | 2013
Grace Kelly Silva; Renata Sesti Costa; Tatiana N. Silveira; Braulia Costa Caetano; Catarina V. Horta; Fredy R. S. Gutierrez; Paulo Marcos da Matta Guedes; Warrison A. Andrade; Mariana De Niz; Ricardo T. Gazzinelli; Dario S. Zamboni; João Santana da Silva
The innate immune response to Trypanosoma cruzi infection comprises several pattern recognition receptors (PRRs), including TLR-2, -4, -7, and -9, as well as the cytosolic receptor Nod1. However, there are additional PRRs that account for the host immune responses to T. cruzi. In this context, the nucleotide-binding oligomerization domain–like receptors (NLRs) that activate the inflammasomes are candidate receptors that deserve renewed investigation. Following pathogen infection, NLRs form large molecular platforms, termed inflammasomes, which activate caspase-1 and induce the production of active IL-1β and IL-18. In this study, we evaluated the involvement of inflammasomes in T. cruzi infection and demonstrated that apoptosis-associated speck–like protein containing a caspase recruitment domain (ASC) inflammasomes, including NLR family, pyrin domain–containing 3 (NLRP3), but not NLR family, caspase recruitment domain–containing 4 or NLR family, pyrin domain–containing 6, are required for triggering the activation of caspase-1 and the secretion of IL-1β. The mechanism by which T. cruzi mediates the activation of the ASC/NLRP3 pathway involves K+ efflux, lysosomal acidification, reactive oxygen species generation, and lysosomal damage. We also demonstrate that despite normal IFN-γ production in the heart, ASC−/− and caspase-1−/− infected mice exhibit a higher incidence of mortality, cardiac parasitism, and heart inflammation. These data suggest that ASC inflammasomes are critical determinants of host resistance to infection with T. cruzi.
European Journal of Immunology | 2011
Braulia Costa Caetano; Amlan Biswas; Djalma S. Lima-Junior; Luciana Benevides; Tiago W. P. Mineo; Catarina V. Horta; Kyoung-Hee Lee; João S. Silva; Ricardo T. Gazzinelli; Dario S. Zamboni; Koichi S. Kobayashi
Nod2 belongs to the nucleotide‐binding domain leucine‐rich repeat family of proteins and senses bacterial cell wall components to initiate innate immune responses against various pathogens. Recently, it has been reported that T‐cell‐intrinsic expression of Nod2 promotes host defense against Toxoplasma gondii infection by inducing type 1 immunity. Here, we present results that demonstrate that Nod2 does not play a role in the defense against T. gondii infection. Nod2‐deficient mice were fully capable of inducing Th1 immune responses and did not show enhanced susceptibility to infection. Upon TCR stimulation in vitro, Nod2‐deficient CD4+ T cells showed normal activation, IL‐2 production, proliferation, and Th1/2 differentiation. Nod2 mRNA and protein were expressed in CD4+ T and CD8+ T cells at substantial levels. Therefore, Nod2, although expressed in CD4+ T cells, does not have an intrinsic function in T‐cell activation and differentiation.
PLOS Neglected Tropical Diseases | 2012
Adele Aud Rodrigues; Jasson S. S. Saosa; Grace Kelly Silva; Flávia Alves Martins; Aline Alves da Silva; Cecílio Purcino S Neto; Catarina V. Horta; Dario S. Zamboni; João Santana da Silva; Eloisa Amália Vieira Ferro; Claudio Vieira da Silva
Background T. cruzi strains have been divided into six discrete typing units (DTUs) according to their genetic background. These groups are designated T. cruzi I to VI. In this context, amastigotes from G strain (T. cruzi I) are highly infective in vitro and show no parasitemia in vivo. Here we aimed to understand why amastigotes from G strain are highly infective in vitro and do not contribute for a patent in vivo infection. Methodology/Principal Findings Our in vitro studies demonstrated the first evidence that IFN-γ would be associated to the low virulence of G strain in vivo. After intraperitoneal amastigotes inoculation in wild-type and knockout mice for TNF-α, Nod2, Myd88, iNOS, IL-12p40, IL-18, CD4, CD8 and IFN-γ we found that the latter is crucial for controlling infection by G strain amastigotes. Conclusions/Significance Our results showed that amastigotes from G strain are highly infective in vitro but did not contribute for a patent infection in vivo due to its susceptibility to IFN-γ production by host immune cells. These data are useful to understand the mechanisms underlying the contrasting behavior of different T. cruzi groups for in vitro and in vivo infection.
Journal of Biological Chemistry | 2017
Luís Henrique Franco; Anna K.A. Fleuri; Nat aacutelia C. Pellison; Gustavo F. S. Quirino; Catarina V. Horta; Renan de Carvalho; Sergio C. Oliveira; Dario S. Zamboni
Leishmaniasis is caused by protozoan parasites of the genus Leishmania. In mammalians, these parasites survive and replicate in macrophages and parasite elimination by macrophages is critical for host resistance. Endosomal Toll-like receptors (TLRs) have been shown to be crucial for resistance to Leishmania major in vivo. For example, mice in the resistant C57BL/6 genetic background that are triple-deficient for TLR3, -7, and -9 (Tlr3/7/9−/−) are highly susceptible to L. major infection. Tlr3/7/9−/− mice are as susceptible as mice deficient in MyD88 or UNC93B1, a chaperone required for appropriate localization of endosomal TLRs, but the mechanisms are unknown. Here we found that macrophages infected with L. major undergo autophagy, which effectively accounted for restriction of parasite replication. Signaling via endosomal TLRs was required for autophagy because macrophages deficient for TLR3, -7, and 9, UNC93B1, or MyD88 failed to undergo L. major-induced autophagy. We also confirmed that Myd88−/−, Tlr3/7/9−/−, and Unc93b1−/− cells were highly permissive to L. major replication. Accordingly, shRNA-mediated suppression of Atg5, an E3 ubiquitin ligase essential for autophagosome elongation, in macrophages impaired the restriction of L. major replication in C57BL/6, but did not affect parasite replication in Myd88−/− or Unc93b1−/− macrophages. Rapamycin treatment reduced inflammatory lesions formed in the ears of Leishmania-infected C57BL/6 and Tlr3/7/9−/− mice, indicating that autophagy operates downstream of TLR signaling and is relevant for disease development in vivo. Collectively, our results indicate that autophagy contributes to macrophage resistance to L. major replication, and mechanistically explain the previously described endosomal TLR-mediated resistance to L. major infection.
PLOS ONE | 2013
Grace Kelly Silva; Larissa D. Cunha; Catarina V. Horta; Alexandre L. N. Silva; Fredy R. S. Gutierrez; João S. Silva; Dario S. Zamboni
The development of Chagas disease is determined by a complex interaction between the genetic traits of both the protozoan parasite, T. cruzi, and the infected host. This process is regulated by multiple genes that control different aspects of the host-parasite interaction. While determination of the relevant genes in humans is extremely difficult, it is feasible to use inbred mouse strains to determine the genes and loci responsible for host resistance to infection. In this study, we investigated the susceptibility of several inbred mouse strains to infection with the highly virulent Y strain of T. cruzi and found a considerable difference in susceptibility between A/J and C57BL/6 mice. We explored the differences between these two mouse strains and found that the A/J strain presented higher mortality, exacerbated and uncontrolled parasitemia and distinct histopathology in the target organs, which were associated with a higher parasite burden and more extensive tissue lesions. We then employed a genetic approach to assess the pattern of inheritance of the resistance phenotype in an F1 population and detected a strong parent-of-origin effect determining the susceptibility of the F1 male mice. This effect is unlikely to result from imprinted genes because the inheritance of this susceptibility was affected by the direction of the parental crossing. Collectively, our genetic approach of using the F1 population suggests that genes contained in the murine chromosome X contribute to the natural resistance against T. cruzi infection. Future linkage studies may reveal the locus and genes participating on the host resistance process reported herein.
Inflammation Research | 2018
Fabiane Sônego; Fernanda V. S. Castanheira; Catarina V. Horta; Alexandre Kanashiro; Paula Giselle Czaikoski; Dario S. Zamboni; José C. Alves-Filho; Fernando Q. Cunha
Archive | 2017
Catarina V. Horta; Juliana I. Hori; S. F. Pereira; Giuliano F. Morgantetti
Archive | 2013
Grace Kelly Silva; Renata Sesti Costa; Tatiana N. Silveira; Braulia Costa Caetano; Catarina V. Horta; Fredy Rs Gutierrez; Paulo M. M. Guedes; Warrison A. Andrade; Mariana De Niz; Ricardo T. Gazzinelli