Dario S. Zamboni
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dario S. Zamboni.
PLOS Pathogens | 2006
Tao Ren; Dario S. Zamboni; Craig R. Roy; William F. Dietrich; Russell E. Vance
Macrophages from C57BL/6J (B6) mice restrict growth of the intracellular bacterial pathogen Legionella pneumophila. Restriction of bacterial growth requires caspase-1 and the leucine-rich repeat-containing protein Naip5 (Birc1e). We identified mutants of L. pneumophila that evade macrophage innate immunity. All mutants were deficient in expression of flagellin, the primary flagellar subunit, and failed to induce caspase-1-mediated macrophage death. Interestingly, a previously isolated flagellar mutant (fliI) that expresses, but does not assemble, flagellin did not replicate in macrophages, and induced macrophage death. Thus, flagellin itself, not flagella or motility, is required to initiate macrophage innate immunity. Immunity to Legionella did not require MyD88, an essential adaptor for toll-like receptor 5 (TLR5) signaling. Moreover, flagellin of Legionella and Salmonella induced cytotoxicity when delivered to the macrophage cytosol using Escherichia coli as a heterologous host. It thus appears that macrophages sense cytosolic flagellin via a TLR5-independent pathway that leads to rapid caspase-1-dependent cell death and provides defense against intracellular bacterial pathogens.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Christopher L. Case; Lara J. Kohler; Jonilson B. Lima; Till Strowig; Marcel R. de Zoete; Richard A. Flavell; Dario S. Zamboni; Craig R. Roy
A flagellin-independent caspase-1 activation pathway that does not require NAIP5 or NRLC4 is induced by the intracellular pathogen Legionella pneumophila. Here we demonstrate that this pathway requires caspase-11. Treatment of macrophages with LPS up-regulated the host components required for this caspase-11 activation pathway. Activation by Legionella differed from caspase-11 activation using previously described agonists in that Legionella caspase-11 activation was rapid and required bacteria with a functional type IV secretion system called Dot/Icm. Legionella activation of caspase-11 induced pyroptosis by a mechanism independent of the NAIP/NLRC4 and caspase-1 axis. Legionella activation of caspase-11 stimulated activation of caspase-1 through NLRP3 and ASC. Induction of caspase-11–dependent responses occurred in macrophages deficient in the adapter proteins TRIF or MyD88 but not in macrophages deficient in both signaling factors. Although caspase-11 was produced in macrophages deficient in the type-I IFN receptor, there was a severe defect in caspase-11–dependent pyroptosis in these cells. These data indicate that macrophages respond to microbial signatures to produce proteins that mediate a capsase-11 response and that the caspase-11 system provides an alternative pathway for rapid detection of an intracellular pathogen capable of evading the canonical caspase-1 activation system that responds to bacterial flagellin.
PLOS ONE | 2010
Fernanda M. Marim; Tatiana N. Silveira; Djalma S. Lima; Dario S. Zamboni
The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.
Nature Medicine | 2013
Djalma S. Lima-Junior; Diego L. Costa; Vanessa Carregaro; Larissa D. Cunha; Alexandre L. N. Silva; Tiago W. P. Mineo; Fredy R. S. Gutierrez; Maria Bellio; Karina R. Bortoluci; Richard A. Flavell; Marcelo T. Bozza; João S. Silva; Dario S. Zamboni
Parasites of the Leishmania genus are the causative agents of leishmaniasis in humans, a disease that affects more than 12 million people worldwide. These parasites replicate intracellularly in macrophages, and the primary mechanisms underlying host resistance involve the production of nitric oxide (NO). In this study we show that the Nlrp3 inflammasome is activated in response to Leishmania infection and is important for the restriction of parasite replication both in macrophages and in vivo as demonstrated through the infection of inflammasome-deficient mice with Leishmania amazonensis, Leishmania braziliensis and Leishmania infantum chagasi. Inflammasome-driven interleukin-1β (IL-1β) production facilitated host resistance to infection, as signaling through IL-1 receptor (IL-1R) and MyD88 was necessary and sufficient to trigger inducible nitric oxide synthase (NOS2)-mediated production of NO. In this manuscript we identify a major signaling platform for host resistance to Leishmania spp. infection and describe the molecular mechanisms underlying Leishmania-induced NO production.
Molecular Microbiology | 2003
Dario S. Zamboni; Susan McGrath; Michel Rabinovitch; Craig R. Roy
Coxiella burnetii is an obligate intracellular pathogen that replicates in large endocytic vacuoles. Genomic sequence data indicate that 21 genes encoding products that are similar to components of the Legionella pneumophila Dot/Icm type IV secretion system are located on a contiguous 35 kb region of the Coxiella chromosome. It was found that several dot/icm genes were expressed by Coxiella during host cell infection and that dot/icm gene expression preceded the formation of large replicative vacuoles. To determine whether these genes encode a functional type IV secretion system, we have amplified the Coxiella dotB, icmQ, icmS and icmW genes and produced the encoded proteins in Legionella mutants in which the native copy of each gene had been deleted. The Coxiella dotB, icmS and icmW products restored dot/icm‐dependent growth of Legionella mutants in eukaryotic host cells. The Coxiella IcmQ protein and the Legionella IcmR protein did not interact, which could explain why the Coxiella icmQ gene was unable to restore growth to a Legionella icmQ mutant. Thus, Coxiella encodes functional components of a type IV secretion system expressed in vivo that is mechanistically related to the Legionella Dot/Icm apparatus. These studies suggest that a dot/icm‐related secretion system could play an important role in creating the specialized vacuole that supports Coxiella replication.
Frontiers in Immunology | 2012
Lilian Hortale de Oliveira Moreira; Dario S. Zamboni
Sensing intracellular pathogens is a process mediated by innate immune cells that is crucial for the induction of inflammatory processes and effective adaptive immune responses against pathogenic microbes. NOD-like receptors (NLRs) comprise a family of intracellular pattern recognition receptors that are important for the recognition of damage and microbial-associated molecular patterns. NOD1 and NOD2 are specialized NLRs that participate in the recognition of a subset of pathogenic microorganisms that are able to invade and multiply intracellularly. Once activated, these molecules trigger intracellular signaling pathways that lead to the activation of transcriptional responses culminating in the expression of a subset of inflammatory genes. In this review, we will focus on the role of NOD1 and NOD2 in the recognition and response to intracellular pathogens, including Gram-positive and Gram-negative bacteria, and on their ability to signal in response to non-peptidoglycan-containing pathogens, such as viruses and protozoan parasites.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Fabianno F. Dutra; Letícia S. Alves; Danielle Rodrigues; Patricia L. Fernandez; Rosane B. de Oliveira; Douglas T. Golenbock; Dario S. Zamboni; Marcelo T. Bozza
Significance Heme causes inflammation in sterile and infectious conditions, contributing to the pathogenesis of sickle cell disease, malaria, and sepsis, but the mechanisms by which heme operates are not completely understood. Here we show that heme induces IL-1β processing through the activation of the nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3) inflammasome in macrophages. Our results suggest that among NLRP3 activators, heme has common as well as unique requirements to trigger inflammasome activation. In vivo, hemolysis and heme cause inflammasome activation. Importantly, macrophages, inflammasome components, and IL-1R contribute to hemolysis-induced lethality. These results highlight the potential of understanding the molecular mechanisms by which heme is sensed by innate immune receptors as a way to identify new therapeutic strategies to treat the pathological consequences of hemolytic diseases. The increase of extracellular heme is a hallmark of hemolysis or extensive cell damage. Heme has prooxidant, cytotoxic, and inflammatory effects, playing a central role in the pathogenesis of malaria, sepsis, and sickle cell disease. However, the mechanisms by which heme is sensed by innate immune cells contributing to these diseases are not fully characterized. We found that heme, but not porphyrins without iron, activated LPS-primed macrophages promoting the processing of IL-1β dependent on nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3). The activation of NLRP3 by heme required spleen tyrosine kinase, NADPH oxidase-2, mitochondrial reactive oxygen species, and K+ efflux, whereas it was independent of heme internalization, lysosomal damage, ATP release, the purinergic receptor P2X7, and cell death. Importantly, our results indicated the participation of macrophages, NLRP3 inflammasome components, and IL-1R in the lethality caused by sterile hemolysis. Thus, understanding the molecular pathways affected by heme in innate immune cells might prove useful to identify new therapeutic targets for diseases that have heme release.
Arthritis & Rheumatism | 2012
Flávio A. Amaral; Vivian V. Costa; Lívia D. Tavares; Daniela Sachs; Fernanda M. Coelho; Caio T. Fagundes; Frederico M. Soriani; Tatiana N. Silveira; Larissa D. Cunha; Dario S. Zamboni; Valerie Quesniaux; Raphael S. Peres; Thiago M. Cunha; Fernando Q. Cunha; Bernhard Ryffel; Daniele G. Souza; Mauro M. Teixeira
OBJECTIVE Deposition of monosodium urate monohydrate (MSU) crystals in the joints promotes an intense inflammatory response and joint dysfunction. This study evaluated the role of the NLRP3 inflammasome and 5-lipoxygenase (5-LOX)-derived leukotriene B(4) (LTB(4) ) in driving tissue inflammation and hypernociception in a murine model of gout. METHODS Gout was induced by injecting MSU crystals into the joints of mice. Wild-type mice and mice deficient in NLRP3, ASC, caspase 1, interleukin-1β (IL-1β), IL-1 receptor type I (IL-1RI), IL-18R, myeloid differentiation factor 88 (MyD88), or 5-LOX were used. Evaluations were performed to assess neutrophil influx, LTB(4) activity, cytokine (IL-1β, CXCL1) production (by enzyme-linked immunosorbent assay), synovial microvasculature cell adhesion (by intravital microscopy), and hypernociception. Cleaved caspase 1 and production of reactive oxygen species (ROS) were analyzed in macrophages by Western blotting and fluorometric assay, respectively. RESULTS Injection of MSU crystals into the knee joints of mice induced neutrophil influx and neutrophil-dependent hypernociception. MSU crystal-induced neutrophil influx was CXCR2-dependent and relied on the induction of CXCL1 in an NLRP3/ASC/caspase 1/IL-1β/MyD88-dependent manner. LTB(4) was produced rapidly after injection of MSU crystals, and this was necessary for caspase 1-dependent IL-1β production and consequent release of CXCR2-acting chemokines in vivo. In vitro, macrophages produced LTB(4) after MSU crystal injection, and LTB(4) was relevant in the MSU crystal-induced maturation of IL-1β. Mechanistically, LTB(4) drove MSU crystal-induced production of ROS and ROS-dependent activation of the NLRP3 inflammasome. CONCLUSION These results reveal the role of the NLRP3 inflammasome in mediating MSU crystal-induced inflammation and dysfunction of the joints, and highlight a previously unrecognized role of LTB(4) in driving NLRP3 inflammasome activation in response to MSU crystals, both in vitro and in vivo.
PLOS Pathogens | 2008
Sunny Shin; Christopher L. Case; Kristina A. Archer; Catarina V. Nogueira; Koichi S. Kobayashi; Richard A. Flavell; Craig R. Roy; Dario S. Zamboni
The immune system must discriminate between pathogenic and nonpathogenic microbes in order to initiate an appropriate response. Toll-like receptors (TLRs) detect microbial components common to both pathogenic and nonpathogenic bacteria, whereas Nod-like receptors (NLRs) sense microbial components introduced into the host cytosol by the specialized secretion systems or pore-forming toxins of bacterial pathogens. The host signaling pathways that respond to bacterial secretion systems remain poorly understood. Infection with the pathogen Legionella pneumophila, which utilizes a type IV secretion system (T4SS), induced an increased proinflammatory cytokine response compared to avirulent bacteria in which the T4SS was inactivated. This enhanced response involved NF-κB activation by TLR signaling as well as Nod1 and Nod2 detection of type IV secretion. Furthermore, a TLR- and RIP2-independent pathway leading to p38 and SAPK/JNK MAPK activation was found to play an equally important role in the host response to virulent L. pneumophila. Activation of this MAPK pathway was T4SS-dependent and coordinated with TLR signaling to mount a robust proinflammatory cytokine response to virulent L. pneumophila. These findings define a previously uncharacterized host response to bacterial type IV secretion that activates MAPK signaling and demonstrate that coincident detection of multiple bacterial components enables immune discrimination between virulent and avirulent bacteria.
Journal of Immunology | 2010
Grace Kelly Silva; Fredy R. S. Gutierrez; Paulo Marcos da Matta Guedes; Catarina V. Horta; Larissa D. Cunha; Tiago W. P. Mineo; Juliana Santiago-Silva; Koichi S. Kobayashi; Richard A. Flavell; João S. Silva; Dario S. Zamboni
An effective innate immune recognition of the intracellular protozoan parasite Trypanosoma cruzi is critical for host resistance against Chagas disease, a severe and chronic illness that affects millions of people in Latin America. In this study, we evaluated the participation of nucleotide-binding oligomerization domain (Nod)-like receptor proteins in host response to T. cruzi infection and found that Nod1-dependent, but not Nod2-dependent, responses are required for host resistance against infection. Bone marrow-derived macrophages from Nod1−/− mice showed an impaired induction of NF-κB–dependent products in response to infection and failed to restrict T. cruzi infection in presence of IFN-γ. Despite normal cytokine production in the sera, Nod1−/− mice were highly susceptible to T. cruzi infection, in a similar manner to MyD88−/− and NO synthase 2−/− mice. These studies indicate that Nod1-dependent responses account for host resistance against T. cruzi infection by mechanisms independent of cytokine production.