Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine A. Brissette is active.

Publication


Featured researches published by Catherine A. Brissette.


PLOS ONE | 2007

Leptospira interrogans Endostatin-Like Outer Membrane Proteins Bind Host Fibronectin, Laminin and Regulators of Complement

Brian Stevenson; Henry A. Choy; Marija Pinne; Matthew L. Rotondi; M. Clarke Miller; Edward DeMoll; Peter Kraiczy; Anne E. Cooley; Trevor P. Creamer; Marc A. Suchard; Catherine A. Brissette; Ashutosh Verma; David A. Haake

The pathogenic spirochete Leptospira interrogans disseminates throughout its hosts via the bloodstream, then invades and colonizes a variety of host tissues. Infectious leptospires are resistant to killing by their hosts alternative pathway of complement-mediated killing, and interact with various host extracellular matrix (ECM) components. The LenA outer surface protein (formerly called LfhA and Lsa24) was previously shown to bind the host ECM component laminin and the complement regulators factor H and factor H-related protein-1. We now demonstrate that infectious L. interrogans contain five additional paralogs of lenA, which we designated lenB, lenC, lenD, lenE and lenF. All six genes encode domains predicted to bear structural and functional similarities with mammalian endostatins. Sequence analyses of genes from seven infectious L. interrogans serovars indicated development of sequence diversity through recombination and intragenic duplication. LenB was found to bind human factor H, and all of the newly-described Len proteins bound laminin. In addition, LenB, LenC, LenD, LenE and LenF all exhibited affinities for fibronectin, a distinct host extracellular matrix protein. These characteristics suggest that Len proteins together facilitate invasion and colonization of host tissues, and protect against host immune responses during mammalian infection.


Infection and Immunity | 2009

Borrelia burgdorferi Infection-Associated Surface Proteins ErpP, ErpA, and ErpC Bind Human Plasminogen

Catherine A. Brissette; Katrin Haupt; Diana Barthel; Anne E. Cooley; Amy Bowman; Christina Skerka; Reinhard Wallich; Peter F. Zipfel; Peter Kraiczy; Brian Stevenson

ABSTRACT Host-derived plasmin plays a critical role in mammalian infection by Borrelia burgdorferi. The Lyme disease spirochete expresses several plasminogen-binding proteins. Bound plasminogen is converted to the serine protease plasmin and thereby may facilitate the bacteriums dissemination throughout the host by degrading extracellular matrix. In this work, we demonstrate plasminogen binding by three highly similar borrelial outer surface proteins, ErpP, ErpA, and ErpC, all of which are expressed during mammalian infection. Extensive characterization of ErpP demonstrated that this protein bound in a dose-dependent manner to lysine binding site I of plasminogen. Removal of three lysine residues from the carboxy terminus of ErpP significantly reduced binding of plasminogen, and the presence of a lysine analog, ε-aminocaproic acid, inhibited the ErpP-plasminogen interaction, thus strongly pointing to a primary role for lysine residues in plasminogen binding. Ionic interactions are not required in ErpP binding of plasminogen, as addition of excess NaCl or the polyanion heparin did not have any significant effect on binding. Plasminogen bound to ErpP could be converted to the active enzyme, plasmin. The three plasminogen-binding Erp proteins can also bind the host complement regulator factor H. Plasminogen and factor H bound simultaneously and did not compete for binding to ErpP, indicating separate binding sites for both host ligands and the ability of the borrelial surface proteins to bind both host proteins.


Infection and Immunity | 2010

Leptospiral Endostatin-Like Protein A Is a Bacterial Cell Surface Receptor for Human Plasminogen

Ashutosh Verma; Catherine A. Brissette; Amy Bowman; Samir T. Shah; Peter F. Zipfel; Brian Stevenson

ABSTRACT The spirochete Leptospira interrogans is a highly invasive pathogen of worldwide public health importance. Studies from our laboratories and another have demonstrated that L. interrogans can acquire host plasminogen on its surface. Exogenous plasminogen activators can then convert bound plasminogen into the functionally active protease plasmin. In this study, we extend upon those observations and report that leptospiral endostatin-like protein A (LenA) binds human plasminogen in a dose-dependent manner. LenA-plasminogen interactions were significantly inhibited by the lysine analog ξ-aminocaproic acid, suggesting that the lysine-binding sites on the amino-terminal kringle portion of the plasminogen molecule play a role in the binding. Previous studies have shown that LenA also binds complement regulator factor H and the extracellular matrix component laminin. Plasminogen competed with both factor H and laminin for binding to LenA, which suggests overlapping ligand-binding sites on the bacterial receptor. Finally, LenA-bound plasminogen could be converted to plasmin, which in turn degraded fibrinogen, suggesting that acquisition of host-derived plasmin by LenA may aid bacterial dissemination throughout host tissues.


PLOS ONE | 2011

Borrelia burgdorferi Enolase Is a Surface-Exposed Plasminogen Binding Protein

Angela M. Floden; John A. Watt; Catherine A. Brissette

Borrelia burgdorferi is the causative agent of Lyme disease, the most commonly reported arthropod-borne disease in the United States. B. burgdorferi is a highly invasive bacterium, yet lacks extracellular protease activity. In order to aid in its dissemination, B. burgdorferi binds plasminogen, a component of the hosts fibrinolytic system. Plasminogen bound to the surface of B. burgdorferi can then be activated to the protease plasmin, facilitating the bacteriums penetration of endothelial cell layers and degradation of extracellular matrix components. Enolases are highly conserved proteins with no sorting sequences or lipoprotein anchor sites, yet many bacteria have enolases bound to their outer surfaces. B. burgdorferi enolase is both a cytoplasmic and membrane associated protein. Enolases from other pathogenic bacteria are known to bind plasminogen. We confirmed the surface localization of B. burgdorferi enolase by in situ protease degradation assay and immunoelectron microscopy. We then demonstrated that B. burgdorferi enolase binds plasminogen in a dose-dependent manner. Lysine residues were critical for binding of plasminogen to enolase, as the lysine analog εaminocaproic acid significantly inhibited binding. Ionic interactions did not play a significant role in plasminogen binding by enolase, as excess NaCl had no effects on the interaction. Plasminogen bound to recombinant enolase could be converted to active plasmin. We conclude that B. burgdorferi enolase is a moonlighting cytoplasmic protein which also associates with the bacterial outer surface and facilitates binding to host plasminogen.


Infection and Immunity | 2009

Borrelia burgdorferi RevA antigen binds host fibronectin.

Catherine A. Brissette; Tomasz Bykowski; Anne E. Cooley; Amy Bowman; Brian Stevenson

ABSTRACT Borrelia burgdorferi, the Lyme disease-causing spirochete, can persistently infect its vertebrate hosts for years. B. burgdorferi is often found associated with host connective tissue, where it interacts with components of the extracellular matrix, including fibronectin. Some years ago, a borrelial surface protein, named BBK32, was identified as a fibronectin-binding protein. However, B. burgdorferi BBK32 mutants are still able to bind fibronectin, indicating that the spirochete possesses additional mechanisms for adherence to fibronectin. We now demonstrate that RevA, an unrelated B. burgdorferi outer surface protein, binds mammalian fibronectin in a saturable manner. Site-directed mutagenesis studies identified the amino terminus of the RevA protein as being required for adhesion to fibronectin. RevA bound to the amino-terminal region of fibronectin. RevA binding to fibronectin was not inhibited by salt or heparin, suggesting that adhesin-ligand interactions are primarily nonionic and occur through the non-heparin-binding regions of the fibronectin amino-terminal domains. revA genes are widely distributed among Lyme disease spirochetes, and the present studies determined that all RevA alleles tested bound fibronectin. In addition, RevB, a paralogous protein found in a subset of B. burgdorferi strains, also bound fibronectin. We also confirmed that RevA is produced during mammalian infection but not during colonization of vector ticks and determined that revA transcription is controlled through a mechanism distinct from that of BBK32.


Infection and Immunity | 2007

Coordinated Expression of Borrelia burgdorferi Complement Regulator-Acquiring Surface Proteins during the Lyme Disease Spirochete's Mammal-Tick Infection Cycle

Tomasz Bykowski; Michael E. Woodman; Anne E. Cooley; Catherine A. Brissette; Volker Brade; Reinhard Wallich; Peter Kraiczy; Brian Stevenson

ABSTRACT The Lyme disease spirochete, Borrelia burgdorferi, is largely resistant to being killed by its hosts’ alternative complement activation pathway. One possible resistance mechanism of these bacteria is to coat their surfaces with host complement regulators, such as factor H. Five different B. burgdorferi outer surface proteins having affinities for factor H have been identified: complement regulator-acquiring surface protein 1 (BbCRASP-1), encoded by cspA; BbCRASP-2, encoded by cspZ; and three closely related proteins, BbCRASP-3, -4, and -5, encoded by erpP, erpC, and erpA, respectively. We now present analyses of the recently identified BbCRASP-2 and cspZ expression patterns throughout the B. burgdorferi infectious cycle, plus novel analyses of BbCRASP-1 and erp-encoded BbCRASPs. Our results, combined with data from earlier studies, indicate that BbCRASP-2 is produced primarily during established mammalian infection, while BbCRASP-1 is produced during tick-to-mammal and mammal-to-tick transmission stages but not during established mammalian infection, and Erp-BbCRASPs are produced from the time of transmission from infected ticks into mammals until they are later acquired by other feeding ticks. Transcription of cspZ and synthesis of BbCRASP-2 were severely repressed during cultivation in laboratory medium relative to mRNA levels observed during mammalian infection, and cspZ expression was influenced by culture temperature and pH, observations which will assist identification of the mechanisms employed by B. burgdorferi to control expression of this borrelial infection-associated protein.


Microbiology | 2009

The Borrelia burgdorferi outer-surface protein ErpX binds mammalian laminin.

Catherine A. Brissette; Ashutosh Verma; Amy Bowman; Anne E. Cooley; Brian Stevenson

The Lyme disease spirochaete, Borrelia burgdorferi, can invade and persistently infect its hosts connective tissues. We now demonstrate that B. burgdorferi adheres to the extracellular matrix component laminin. The surface-exposed outer-membrane protein ErpX was identified as having affinity for laminin, and is the first laminin-binding protein to be identified in a Lyme disease spirochaete. The adhesive domain of ErpX was shown to be contained within a small, unstructured hydrophilic segment at the proteins centre. The sequence of that domain is distinct from any previously identified bacterial laminin adhesin, suggesting a unique mode of laminin binding.


Infection and Immunity | 2009

Borrelia burgdorferi BmpA Is a Laminin-Binding Protein

Ashutosh Verma; Catherine A. Brissette; Amy Bowman; Brian Stevenson

ABSTRACT The Borrelia burgdorferi BmpA outer surface protein plays a significant role in mammalian infection by the Lyme disease spirochete and is an important antigen for the serodiagnosis of human infection. B. burgdorferi adheres to host extracellular matrix components, including laminin. The results of our studies indicate that BmpA and its three paralogous proteins, BmpB, BmpC, and BmpD, all bind to mammalian laminin. BmpA did not bind mammalian type I or type IV collagens or fibronectin. BmpA-directed antibodies significantly inhibited the adherence of live B. burgdorferi to laminin. The laminin-binding domain of BmpA was mapped to the carboxy-terminal 80 amino acids. Solubilized collagen inhibited BmpA-laminin binding, suggesting interactions through the collagen-binding domains of laminin. These results, together with previous data, indicate that BmpA and its paralogs are targets for the development of preventative and curative therapies for Lyme disease.


International Journal of Medical Microbiology | 2008

Borrelia burgdorferi complement regulator-acquiring surface proteins (BbCRASPs): Expression patterns during the mammal-tick infection cycle.

Tomasz Bykowski; Michael E. Woodman; Anne E. Cooley; Catherine A. Brissette; Reinhard Wallich; Volker Brade; Peter Kraiczy; Brian Stevenson

Host complement is widely distributed throughout mammalian body fluids and can be activated immediately as part of the first line of defense against invading pathogens. The agent of Lyme disease, Borrelia burgdorferi sensu lato (s.l.), is naturally resistant to that innate immune defense system of its hosts. One resistance mechanism appears to involve binding fluid-phase regulators of complement to distinct borrelial outer surface molecules known as CRASPs (complement regulator acquiring surface proteins). Using sensitive molecular biology techniques, expression patterns of all three classes of genes encoding the CRASPs of B. burgdorferi sensu stricto (BbCRASPs) have been analyzed throughout the natural tick-mammal infection cycle. Each class shows a different expression profile in vivo and the results are summarized herein. Studies on the expression of B. burgdorferi genes using animal models of infection have advanced our knowledge on the ability of the causative agent to circumvent innate immune defenses, the contributions of CRASPs to spirochete infectivity, and the pathogenesis of Lyme disease.


International Journal of Medical Microbiology | 2008

Lyme borreliosis spirochete Erp proteins, their known host ligands, and potential roles in mammalian infection.

Catherine A. Brissette; Anne E. Cooley; Logan H. Burns; Sean P. Riley; Ashutosh Verma; Michael E. Woodman; Tomasz Bykowski; Brian Stevenson

Lyme borreliae naturally maintain numerous distinct DNA elements of the cp32 family, each of which carries a mono- or bicistronic erp locus. The encoded Erp proteins are surface-exposed outer membrane lipoproteins that are produced at high levels during mammalian infection but largely repressed during colonization of vector ticks. Recent studies have revealed that some Erp proteins can serve as bacterial adhesins, binding host proteins such as the complement regulator factor H and the extracellular matrix component laminin. These results suggest that Erp proteins play roles in multiple aspects of mammalian infection.

Collaboration


Dive into the Catherine A. Brissette's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Bowman

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela M. Floden

University of North Dakota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Watt

University of North Dakota

View shared research outputs
Researchain Logo
Decentralizing Knowledge