Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine A. Meldrum is active.

Publication


Featured researches published by Catherine A. Meldrum.


american thoracic society international conference | 2010

Increased Cytokine Response of Rhinovirus-infected Airway Epithelial Cells in Chronic Obstructive Pulmonary Disease

Dina Schneider; Shyamala Ganesan; Adam T. Comstock; Catherine A. Meldrum; Raja Mahidhara; Adam M. Goldsmith; Jeffrey L. Curtis; Fernando J. Martinez; Marc B. Hershenson; Umadevi S. Sajjan

RATIONALE Airway inflammation is a central feature of chronic obstructive pulmonary disease (COPD). COPD exacerbations are often triggered by rhinovirus (RV) infection. OBJECTIVES We hypothesized that airway epithelial cells from patients with COPD maintain a proinflammatory phenotype compared with control subjects, leading to greater RV responses. METHODS Cells were isolated from tracheobronchial tissues of 12 patients with COPD and 10 transplant donors. Eight patients with COPD had severe emphysema, three had mild to moderate emphysema, and one had no emphysema. All had moderate to severe airflow obstruction, and six met criteria for chronic bronchitis or had at least one exacerbation the previous year. Cells were grown at air-liquid interface and infected with RV serotype 39. Cytokine and IFN expression was measured by ELISA. Selected genes involved in inflammation, oxidative stress, and proteolysis were assessed by focused gene array and real-time polymerase chain reaction. MEASUREMENTS AND MAIN RESULTS Compared with control subjects, cells from patients with COPD demonstrated increased mRNA expression of genes involved in oxidative stress and the response to viral infection, including NOX1, DUOXA2, MMP12, ICAM1, DDX58/RIG-I, STAT1, and STAT2. COPD cells showed elevated baseline and RV-stimulated protein levels of IL-6, IL-8/CXCL8, and growth-related oncogene-alpha/CXCL1. COPD cells demonstrated increased viral titer and copy number after RV infection, despite increased IL-29/IFN-lambda1, IL-28A/IFN-lambda2, and IFN-inducible protein-10/CXCL10 protein levels. Finally, RV-infected COPD cultures showed increased mRNA expression of IL28A/IFNlambda2, IL29/IFNlambda1, IFIH1/MDA5, DDX58/RIG-I, DUOX1, DUOX2, IRF7, STAT1, and STAT2. CONCLUSIONS Airway epithelial cells from patients with COPD show higher baseline levels of cytokine expression and increased susceptibility to RV infection, despite an increased IFN response.


American Journal of Respiratory and Critical Care Medicine | 2009

Lung Dendritic Cell Expression of Maturation Molecules Increases with Worsening Chronic Obstructive Pulmonary Disease

Fernando J. Martinez; MeiLan K. Han; Theresa M. Ames; Stephen W. Chensue; Jill C. Todt; Douglas A. Arenberg; Catherine A. Meldrum; Christi Getty; Lisa McCloskey; Jeffrey L. Curtis

RATIONALE Dendritic cells (DCs) have not been well studied in chronic obstructive pulmonary disease (COPD), yet their integral role in activating and differentiating T cells makes them potential participants in COPD pathogenesis. OBJECTIVES To determine the expression of maturation molecules by individual DC subsets in relationship to COPD stage and to expression of the acute activation marker CD69 by lung CD4(+) T cells. METHODS We nonenzymatically released lung leukocytes from human surgical specimens (n = 42) and used flow cytometry to identify three DC subsets (mDC1, mDC2, and pDC) and to measure their expression of three costimulatory molecules (CD40, CD80 and CD86) and of CD83, the definitive marker of DC maturation. Spearman nonparametric correlation analysis was used to identify significant correlations between expression of DC maturation molecules and COPD severity. MEASUREMENTS AND MAIN RESULTS Expression of CD40 by mDC1 and mDC2 and of CD86 by mDC2 was high regardless of GOLD stage, but CD80 and CD83 on these two DC subsets increased with disease progression. pDC also showed significant increases in expression of CD40 and CD80. Expression of all but one of the DC molecules that increased with COPD severity also correlated with CD69 expression on lung CD4(+) T cells from the same patients, with the exception of CD83 on mDC2. CONCLUSIONS This cross-sectional study implies that COPD progression is associated with significant increases in costimulatory molecule expression by multiple lung DC subsets. Interactions with lung DCs may contribute to the immunophenotype of CD4(+) T cells in advanced COPD. Clinical trial registered with www.clinicaltrials.gov (NCT00281229).


Journal of Immunology | 2010

Cytotoxic Potential of Lung CD8+ T Cells Increases with Chronic Obstructive Pulmonary Disease Severity and with In Vitro Stimulation by IL-18 or IL-15

MeiLan K. Han; Fernando J. Martinez; Susan Murray; Lyrica X. Liu; Stephen W. Chensue; Timothy Polak; Joanne Sonstein; Jill C. Todt; Theresa M. Ames; Douglas A. Arenberg; Catherine A. Meldrum; Christi Getty; Lisa McCloskey; Jeffrey L. Curtis

Lung CD8+ T cells might contribute to progression of chronic obstructive pulmonary disease (COPD) indirectly via IFN-γ production or directly via cytolysis, but evidence for either mechanism is largely circumstantial. To gain insights into these potential mechanisms, we analyzed clinically indicated lung resections from three human cohorts, correlating findings with spirometrically defined disease severity. Expression by lung CD8+ T cells of IL-18R and CD69 correlated with severity, as did mRNA transcripts for perforin and granzyme B, but not Fas ligand. These correlations persisted after correction for age, smoking history, presence of lung cancer, recent respiratory infection, or inhaled corticosteroid use. Analysis of transcripts for killer cell lectin-like receptor G1, IL-7R, and CD57 implied that lung CD8+ T cells in COPD do not belong to the terminally differentiated effector populations associated with chronic infections or extreme age. In vitro stimulation of lung CD8+ T cells with IL-18 plus IL-12 markedly increased production of IFN-γ and TNF-α, whereas IL-15 stimulation induced increased intracellular perforin expression. Both IL-15 and IL-18 protein expression could be measured in whole lung tissue homogenates, but neither correlated in concentration with spirometric severity. Although lung CD8+ T cell expression of mRNA for both T-box transcription factor expressed in T cells and GATA-binding protein 3 (but not retinoic acid receptor-related orphan receptor γ or α) increased with spirometric severity, stimulation of lung CD8+ T cells via CD3ε-induced secretion of IFN-γ, TNF-α, and GM-CSF, but not IL-5, IL-13, and IL-17A. These findings suggest that the production of proinflammatory cytokines and cytotoxic molecules by lung-resident CD8+ T cells contributes to COPD pathogenesis.


Respiratory Research | 2013

Lung CD8+ T cells in COPD have increased expression of bacterial TLRs

Fernando J. Martinez; MeiLan K. Han; George R. Washko; Alexandra L. McCubbrey; Stephen W. Chensue; Douglas A. Arenberg; Catherine A. Meldrum; Lisa McCloskey; Jeffrey L. Curtis

BackgroundToll-like receptors (TLRs) on T cells can modulate their responses, however, the extent and significance of TLR expression by lung T cells, NK cells, or NKT cells in chronic obstructive pulmonary disease (COPD) is unknown.MethodsLung tissue collected from clinically-indicated resections (n = 34) was used either: (a) to compare the expression of TLR1, TLR2, TLR2/1, TLR3, TLR4, TLR5, TLR6 and TLR9 on lung CD8+ T cells, CD4+ T cells, NK cells and NKT cells from smokers with or without COPD; or (b) to isolate CD8+ T cells for culture with anti-CD3ε without or with various TLR ligands. We measured protein expression of IFN-γ, TNF-α, IL-13, perforin, granzyme A, granzyme B, soluble FasL, CCL2, CCL3, CCL4, CCL5, CCL11, and CXCL9 in supernatants.ResultsAll the lung subsets analyzed demonstrated low levels of specific TLR expression, but the percentage of CD8+ T cells expressing TLR1, TLR2, TLR4, TLR6 and TLR2/1 was significantly increased in COPD subjects relative to those without COPD. In contrast, from the same subjects, only TLR2/1 and TLR2 on lung CD4+ T cells and CD8+ NKT cells, respectively, showed a significant increase in COPD and there was no difference in TLR expression on lung CD56+ NK cells. Production of the Tc1 cytokines IFN-γ and TNF-α by lung CD8+ T cells were significantly increased via co-stimulation by Pam3CSK4, a specific TLR2/1 ligand, but not by other agonists. Furthermore, this increase in cytokine production was specific to lung CD8+ T cells from patients with COPD as compared to lung CD8+ T cells from smokers without COPD.ConclusionsThese data suggest that as lung function worsens in COPD, the auto-aggressive behavior of lung CD8+ T cells could increase in response to microbial TLR ligands, specifically ligands against TLR2/1.


Proceedings of the American Thoracic Society | 2008

Multidisciplinary Care of the Patient with Chronic Obstructive Pulmonary Disease

Anne Marie Kuzma; Yvonne Meli; Catherine A. Meldrum; Patricia A. Jellen; Marianne Butler-Lebair; Debra Koczen-Doyle; Peter Rising; Kim Stavrolakes; Frances Brogan

The National Emphysema Treatment Trial used a multidisciplinary team approach to implement the maximum medical care protocol, including adjustment of medications and outpatient pulmonary rehabilitation for all patients and nutritional and psychological counseling as needed. This article discusses the benefits of such an approach in the care of the patient with chronic obstructive pulmonary disease. Team member roles complement each other and contribute to the goal of providing the highest-quality medical care. The primary focus of the team is to reinforce the medical plan and to provide patient education and support. This article reviews the elements of the initial patient assessment and the functional and nutritional assessment. Patient education focuses on medication use, recognition and management of chronic obstructive pulmonary disease exacerbation symptoms, smoking cessation, advance directives, and travel.


PLOS ONE | 2014

Human CD56+ cytotoxic lung lymphocytes kill autologous lung cells in chronic obstructive pulmonary disease

Valerie R. Stolberg; Sean Crudgington; Fernando J. Martinez; MeiLan K. Han; Stephen W. Chensue; Douglas A. Arenberg; Catherine A. Meldrum; Lisa McCloskey; Jeffrey L. Curtis

CD56+ natural killer (NK) and CD56+ T cells, from sputum or bronchoalveolar lavage of subjects with chronic obstructive pulmonary disease (COPD) are more cytotoxic to highly susceptible NK targets than those from control subjects. Whether the same is true in lung parenchyma, and if NK activity actually contributes to emphysema progression are unknown. To address these questions, we performed two types of experiments on lung tissue from clinically-indicated resections (n = 60). First, we used flow cytometry on fresh single-cell suspension to measure expression of cell-surface molecules (CD56, CD16, CD8, NKG2D and NKp44) on lung lymphocytes and of the 6D4 epitope common to MICA and MICB on lung epithelial (CD326+) cells. Second, we sequentially isolated CD56+, CD8+ and CD4+ lung lymphocytes, co-cultured each with autologous lung target cells, then determined apoptosis of individual target cells using Annexin-V and 7-AAD staining. Lung NK cells (CD56+ CD3−) and CD56+ T cells (CD56+ CD3+) were present in a range of frequencies that did not differ significantly between smokers without COPD and subjects with COPD. Lung NK cells had a predominantly “cytotoxic” CD56+ CD16+ phenotype; their co-expression of CD8 was common, but the percentage expressing CD8 fell as FEV1 % predicted decreased. Greater expression by autologous lung epithelial cells of the NKG2D ligands, MICA/MICB, but not expression by lung CD56+ cells of the activating receptor NKG2D, correlated inversely with FEV1 % predicted. Lung CD56+ lymphocytes, but not CD4+ or CD8+ conventional lung T cells, rapidly killed autologous lung cells without additional stimulation. Such natural cytotoxicity was increased in subjects with severe COPD and was unexplained in multiple regression analysis by age or cancer as indication for surgery. These data show that as spirometry worsens in COPD, CD56+ lung lymphocytes exhibit spontaneous cytotoxicity of autologous structural lung cells, supporting their potential role in emphysema progression. Trial Registration ClinicalTrials.gov NCT00281229


Heart & Lung | 2013

Subgroup analysis of symptoms and their effect on functioning, exercise capacity, and physical activity in patients with severe chronic obstructive pulmonary disease

Soo Kyung Park; Catherine A. Meldrum; Janet L. Larson

BACKGROUND Little is known about symptom clusters and their effect on outcomes in people with chronic obstructive pulmonary disease (COPD). PURPOSES To determine whether subgroups of patients with COPD could be identified by symptom ratings, whether they differed on selected demographic and clinical characteristics, and whether they differed on functioning, exercise capacity, and physical activity. METHOD Subjects with severe COPD (n = 596) were drawn from the National Emphysema Treatment Trial dataset. Data were drawn from questionnaires and clinical measures. RESULTS Two subgroup clusters emerged from four symptoms. Mean age and the proportion of participants with higher education, higher income levels, and using oxygen at rest were significantly different between subgroups. Participants with high levels of symptoms had lower functioning and decreased exercise capacity. Symptom cluster subgroups were significantly associated with social functioning. CONCLUSION These findings suggest that screening for high levels of symptoms may be important in patients with severe COPD.


American Journal of Respiratory and Critical Care Medicine | 2017

Age and Small Airway Imaging Abnormalities in Subjects with and without Airflow Obstruction in SPIROMICS

Carlos H. Martinez; Alejandro A. Diaz; Catherine A. Meldrum; Jeffrey L. Curtis; Christopher B. Cooper; Cheryl Pirozzi; Richard E. Kanner; Robert Paine; Prescott G. Woodruff; Eugene R. Bleecker; Nadia N. Hansel; R. Graham Barr; Nathaniel Marchetti; Gerard J. Criner; Ella A. Kazerooni; Eric A. Hoffman; Brian D. Ross; Craig J. Galbán; Christine T. Cigolle; Fernando J. Martinez; MeiLan K. Han

Rationale: Aging is associated with reduced FEV1 to FVC ratio (FEV1/FVC), hyperinflation, and alveolar enlargement, but little is known about how age affects small airways. Objectives: To determine if chest computed tomography (CT)‐assessed functional small airway would increase with age, even among asymptomatic individuals. Methods: We used parametric response mapping analysis of paired inspiratory/expiratory CTs to identify functional small airway abnormality (PRMFSA) and emphysema (PRMEMPH) in the SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study) cohort. Using adjusted linear regression models, we analyzed associations between PRMFSA and age in subjects with or without airflow obstruction. We subdivided participants with normal spirometry based on respiratory‐related impairment (6‐minute‐walk distance <350 m, modified Medical Research Council ≥2, chronic bronchitis, St. Georges Respiratory Questionnaire >25, respiratory events requiring treatment [antibiotics and/or steroids or hospitalization] in the year before enrollment). Measurements and Main Results: Among 580 never‐ and ever‐smokers without obstruction or respiratory impairment, PRMFSA increased 2.7% per decade, ranging from 3.6% (ages 40–50 yr) to 12.7% (ages 70–80 yr). PRMEMPH increased nonsignificantly (0.1% [ages 40–50 yr] to 0.4% [ages 70–80 yr]; P = 0.34). Associations were similar among nonobstructed individuals with respiratory‐related impairment. Increasing PRMFSA in subjects without airflow obstruction was associated with increased FVC (P = 0.004) but unchanged FEV1 (P = 0.94), yielding lower FEV1/FVC ratios (P < 0.001). Although emphysema was also significantly associated with lower FEV1/FVC (P = 0.04), its contribution relative to PRMFSA in those without airflow obstruction was limited by its low burden. Conclusions: In never‐ and ever‐smokers without airflow obstruction, aging is associated with increased FVC and CT‐defined functional small airway abnormality regardless of respiratory symptoms.


PLOS ONE | 2014

Basal Gene Expression by Lung CD4+ T Cells in Chronic Obstructive Pulmonary Disease Identifies Independent Molecular Correlates of Airflow Obstruction and Emphysema Extent

Alexandra L. McCubbrey; Sean Crudgington; Joshua Nelson; Fernando J. Martinez; MeiLan K. Han; George R. Washko; Stephen W. Chensue; Douglas A. Arenberg; Catherine A. Meldrum; Lisa McCloskey; Jeffrey L. Curtis

Lung CD4+ T cells accumulate as chronic obstructive pulmonary disease (COPD) progresses, but their role in pathogenesis remains controversial. To address this controversy, we studied lung tissue from 53 subjects undergoing clinically-indicated resections, lung volume reduction, or transplant. Viable single-cell suspensions were analyzed by flow cytometry or underwent CD4+ T cell isolation, followed either by stimulation with anti-CD3 and cytokine/chemokine measurement, or by real-time PCR analysis. In lung CD4+ T cells of most COPD subjects, relative to lung CD4+ T cells in smokers with normal spirometry: (a) stimulation induced minimal IFN-γ or other inflammatory mediators, but many subjects produced more CCL2; (b) the T effector memory subset was less uniformly predominant, without correlation with decreased IFN-γ production. Analysis of unstimulated lung CD4+ T cells of all subjects identified a molecular phenotype, mainly in COPD, characterized by markedly reduced mRNA transcripts for the transcription factors controlling TH1, TH2, TH17 and FOXP3+ T regulatory subsets and their signature cytokines. This mRNA-defined CD4+ T cell phenotype did not result from global inability to elaborate mRNA; increased transcripts for inhibitory CD28 family members or markers of anergy; or reduced telomerase length. As a group, these subjects had significantly worse spirometry, but not DLCO, relative to subjects whose lung CD4+ T cells expressed a variety of transcripts. Analysis of mRNA transcripts of unstimulated lung CD4+ T cell among all subjects identified two distinct molecular correlates of classical COPD clinical phenotypes: basal IL-10 transcripts correlated independently and inversely with emphysema extent (but not spirometry); by contrast, unstimulated IFN-γ transcripts correlated independently and inversely with reduced spirometry (but not reduced DLCO or emphysema extent). Aberrant lung CD4+ T cells polarization appears to be common in advanced COPD, but also exists in some smokers with normal spirometry, and may contribute to development and progression of specific COPD phenotypes. Trial Registration ClinicalTrials.gov as NCT00281229


American Journal of Respiratory and Critical Care Medicine | 2017

A New Approach for Identifying Patients with Undiagnosed Chronic Obstructive Pulmonary Disease

Fernando J. Martinez; David M. Mannino; Nancy Kline Leidy; Karen G. Malley; Elizabeth D. Bacci; R. Graham Barr; Russ P. Bowler; MeiLan K. Han; Julia F. Houfek; Barry J. Make; Catherine A. Meldrum; Stephen I. Rennard; Byron Thomashow; John MacLaren Walsh; Barbara P. Yawn

Rationale: Chronic obstructive pulmonary disease (COPD) is often unrecognized and untreated. Objectives: To develop a method for identifying undiagnosed COPD requiring treatment with currently available therapies (FEV1 <60% predicted and/or exacerbation risk). Methods: We conducted a multisite, cross‐sectional, case‐control study in U.S. pulmonary and primary care clinics that recruited subjects from primary care settings. Cases were patients with COPD and at least one exacerbation in the past year or FEV1 less than 60% of predicted without exacerbation in the past year. Control subjects were persons with no COPD or with mild COPD (FEV1 ≥60% predicted, no exacerbation in the past year). In random forests analyses, we identified the smallest set of questions plus peak expiratory flow (PEF) with optimal sensitivity (SN) and specificity (SP). Measurements and Main Results: PEF and spirometry were recorded in 186 cases and 160 control subjects. The mean (SD) age of the sample population was 62.7 (10.1) years; 55% were female; 86% were white; and 16% had never smoked. The mean FEV1 percent predicted for cases was 42.5% (14.2%); for control subjects, it was 82.5% (15.7%). A five‐item questionnaire, CAPTURE (COPD Assessment in Primary Care to Identify Undiagnosed Respiratory Disease and Exacerbation Risk), was used to assess exposure, breathing problems, tiring easily, and acute respiratory illnesses. CAPTURE exhibited an SN of 95.7% and an SP of 44.4% for differentiating cases from all control subjects, and an SN of 95.7% and an SP of 67.8% for differentiating cases from no‐COPD control subjects. The PEF (males, <350 L/min; females, <250 L/min) SN and SP were 88.0% and 77.5%, respectively, for differentiating cases from all control subjects, and they were 88.0% and 90.8%, respectively, for distinguishing cases from no‐COPD control subjects. The CAPTURE plus PEF exhibited improved SN and SP for all cases versus all control subjects (89.7% and 78.1%, respectively) and for all cases versus no‐COPD control subjects (89.7% and 93.1%, respectively). Conclusions: CAPTURE with PEF can identify patients with COPD who would benefit from currently available therapy and require further diagnostic evaluation. Clinical trial registered with clinicaltrials.gov (NCT01880177).

Collaboration


Dive into the Catherine A. Meldrum's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge